
Homework 10

Due Monday, April 11 before 5:00pm
Use [Live Editor > Save > Export to PDF] to prepare your submission for Gradescope.

Cell/Matrix Interactions
Multivariable linear regression can be used to analyze large-scale datasets and to develop models that describe 
complex biological phenomena. The dataset that you will analyze in this problem is from an experiment 
designed to study how cancer cells interact with a set of proteins termed extracellular matrix (ECM) proteins.

ECM proteins (collagen is a very common example) provide structure to normal tissues as well as diseased 
tissues such as tumors. In addition to a structural role, ECM proteins can also provide important signals to 
cancer cells, which can help the cancer cells survive, proliferate, or migrate to other sites in the body. Although 
it is clear that ECM proteins are important in cancer, the overall matrix of a tumor consists of a complex 
combination of many different ECM proteins.  What is not currently known is, (i) what are the most important 
ECM proteins in different types of cancer, and (ii) what happens when cancer cells interact with combinations of 
ECM proteins at the same time?

For this problem, you will analyze actual data associated with the following experiment.  

• A lung cancer cell line was cultured on 55 different combinations of 10 ECM proteins (10 proteins listed 
in next bullet). These unique combinations included the 10 ECM proteins individually, and the 45 2-factor 
combinations of the 10 proteins. For example, one of the conditions was collagen 1 (C1) by itself, and 
then 9 other conditions were C1 paired with each of the other ECM proteins.

• ECM proteins (and abbreviations):  C1= collagen 1; C3= collagen 3; C4= collagen 4; G3= galectin-3; G8= 
galectin-8; OP= osteopontin; TC= tenascin-C; TR= tenascin-R; FN= fibronectin; LN= laminin

• After culture, the number of adherent cancer cells was quantified. If an ECM combination enhanced the 
number of adherent cells, then this ECM likely promotes cancer cell adhesion, survival, and possibly 
proliferation.

• For each ECM combination, there were approximately 15-20 replicate measurements of adherent cell 
number.

From this dataset, the goal is to quantitatively determine how individual ECM proteins, and specific 
combinations of ECM proteins, control lung cancer cell adhesion (adherent cell number).

Fit a linear model to predict the number of adherent cells for each ECM and their interactions. The data are 
stored in the variable ecm.

Notes (see help fitlm for more details):

• This experiment examined 10 distinct ECMs, not 10 variations on one “standard” ECM. As such, there 
should be no intercept in your model. You can disable the intercept with the ‘intercept’ argument.

• You can easily include interactions for all variables using the ‘interactions’ argument to fitlm.
• You can specify the response variable with the ‘ResponseVar’ argument.

load HW10_data.mat
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rng(210); % set the random number generator

% place your code here
proteins = table2array(ecm(:,1:10));
cell_count = table2array(ecm(:,end));
model = fitlm(proteins, cell_count, 'interactions', 'Intercept', false)

model = 
Linear regression model:
    y ~ x1*x2 + x1*x3 + x1*x4 + x1*x5 + x1*x6 + x1*x7 + x1*x8 + x1*x9 + x1*x10 + x2*x3 + x2*x4 + x2*x5 + x2*x6 + x2*x7 + x2*x8 + x2*x9 + x2*x10 + x3*x4 + x3*x5 + x3*x6 + x3*x7 + x3*x8 + x3*x9 + x3*x10 + x4*x5 + x4*x6 + x4*x7 + x4*x8 + x4*x9 + x4*x10 + x5*x6 + x5*x7 + x5*x8 + x5*x9 + x5*x10 + x6*x7 + x6*x8 + x6*x9 + x6*x10 + x7*x8 + x7*x9 + x7*x10 + x8*x9 + x8*x10 + x9*x10

Estimated Coefficients:
              Estimate      SE       tStat        pValue  
              ________    ______    ________    __________

    x1         14.259     1.7029       8.373    2.2371e-16
    x2         13.747     1.7029      8.0725    2.2886e-15
    x3         7.4353     1.7029      4.3661    1.4171e-05
    x4         10.443     1.7148      6.0899    1.6954e-09
    x5         1.3867     1.8129     0.76488       0.44455
    x6         2.3882     1.7029      1.4024       0.16115
    x7          0.725     1.7554     0.41302       0.67969
    x8         1.1404     1.6659     0.68454       0.49382
    x9         6.8051     1.6659      4.0849    4.8184e-05
    x10        5.9941     1.7029      3.5199    0.00045424
    x1:x2     -16.294     2.9496     -5.5242    4.3756e-08
    x1:x3     -6.5118     2.9496     -2.2077      0.027527
    x1:x4     -11.155     2.9564      -3.773    0.00017224
    x1:x5     -4.7808     3.0144      -1.586       0.11311
    x1:x6     -1.8412     2.9496    -0.62422       0.53265
    x1:x7     -6.2368     2.9802     -2.0928       0.03666
    x1:x8      4.7831     2.9284      1.6334       0.10275
    x1:x9     -7.2757     2.9284     -2.4846      0.013159
    x1:x10    -4.2647     2.9496     -1.4459       0.14858
    x2:x3     -6.5882     2.9496     -2.2336      0.025763
    x2:x4     -16.237     2.9564     -5.4921    5.2188e-08
    x2:x5     -4.1161     3.0144     -1.3655       0.17246
    x2:x6     -14.747     2.9496     -4.9997    6.9472e-07
    x2:x7     -9.6368     2.9802     -3.2336     0.0012684
    x2:x8     -9.0639     2.9284     -3.0952     0.0020298
    x2:x9     -8.7639     2.9284     -2.9928      0.002843
    x2:x10    -6.0706     2.9496     -2.0581      0.039877
    x3:x4     -7.6312     2.9564     -2.5812      0.010009
    x3:x5      9.8369     3.0144      3.2633     0.0011444
    x3:x6      4.1294     2.9496         1.4       0.16187
    x3:x7      8.8691     2.9802      2.9761     0.0030008
    x3:x8      5.8537     2.9284       1.999      0.045923
    x3:x9     -4.0051     2.9284     -1.3677       0.17176
    x3:x10    -2.5647     2.9496    -0.86951       0.38481
    x4:x5     -4.4414     3.0211     -1.4701        0.1419
    x4:x6     -9.3076     2.9564     -3.1483     0.0016986
    x4:x7     -8.2091     2.9869     -2.7483     0.0061142
    x4:x8     -10.089     2.8275     -3.5683    0.00037904
    x4:x9     -15.197     2.8009     -5.4259    7.4839e-08
    x4:x10    -13.924     3.0211     -4.6088    4.6579e-06
    x5:x6      5.7663     3.0144      1.9129       0.05609
    x5:x7      4.1354     3.0443      1.3584       0.17469
    x5:x8      6.1141     2.9937      2.0423      0.041419
    x5:x9     0.19646     2.9937    0.065626       0.94769
    x5:x10    -3.8573     3.0144     -1.2796       0.20103
    x6:x7     -1.2662     2.9802    -0.42487       0.67104
    x6:x8     0.22431     2.9284    0.076598       0.93896
    x6:x9     -2.2169     2.9284    -0.75703       0.44924
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    x6:x10    -4.4324     2.9802     -1.4873        0.1373
    x7:x8     0.31317     3.0624     0.10226       0.91857
    x7:x9     -2.7772     2.9592     -0.9385       0.34825
    x7:x10    -2.8074     2.9802    -0.94202       0.34645
    x8:x9     -1.7153     2.7528    -0.62312       0.53337
    x8:x10    -3.2228     2.9284     -1.1005       0.27141
    x9:x10    -6.0933     2.9284     -2.0808      0.037745

Number of observations: 923, Error degrees of freedom: 868
Root Mean Squared Error: 7.02

Every term in the linear model is nonzero (although only some a statistically significant). It's unlikely that all the 
combinations have a nonzero effect. The problem is our linear model includes a large number of features (1 
intercept + 10 ECM proteins + 45 interactions) but lacks any regularization to enforce sparsity. Let's use the 
LASSO to fit a more parsimonious model.

Preparing the Data
Matlab's lasso function does not use the formula-style input of fitlm. We need to construct our own model 
matrix with for all the proteins and their two-way interactions. The following code builds the model matrix. Stop 
here and try it for yourself first if you want a challenge!

First, let's pull the response vector out of the dataframe. It's in the column ecm.cells.

cells = ecm.cells;
ecm.cells = [];

The second line deletes the column from the data table. Now let's compute the size of the model matrix.

[n,k] = size(ecm);
p = 1 + k + nchoosek(k,2);

There are n rows (one per observation) and k proteins. The number of interactions is the number of ways we 
can choose two of the k proteins. The extra column of ones is for the intercept. Now we can create a model 
matrix and fill the corresponding columns.

X = ones(n,p);
X(:,2:k+1) = table2array(ecm); % Fill the first-order terms

% create a cell array of names for each term in the model
treatment = cell(p,1);
treatment{1} = '(Intercept)';
treatment(2:k+1) = ecm.Properties.VariableNames;

twi = 1+k+1; % current column
for i = 1:k
    for j = i+1:k
        X(:,twi) = X(:,1+i) .* X(:,1+j); % create the interaction
        treatment{twi} = [treatment{1+i} ':' treatment{1+j}]; % add the interaction name
        twi = twi + 1;
    end
end
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Regularized Linear Regression with the LASSO

Now we're ready to use the lasso command to fit a linear model that penalizes nonzero coefficients.

[B,fitinfo] = lasso(X,cells,'NumLambda',10,'CV',5);

As we said in class, there isn't a good way to find the value of , the regularization constant. Instead we ask 
lasso to try a range of 10 different values using the 'NumLambda' parameter. The fitinfo structure provides 
information about the model fitting.

fitinfo

fitinfo = struct with fields:
         Intercept: [10.0981 8.0219 6.5435 6.1946 5.6582 5.5577 6.0901 6.1985 6.7636 8.3640]
            Lambda: [2.6340e-04 7.3293e-04 0.0020 0.0057 0.0158 0.0439 0.1223 0.3402 0.9466 2.6340]
             Alpha: 1
                DF: [55 54 53 54 52 48 36 25 6 0]
               MSE: [54.3102 54.3094 54.2809 54.2044 54.0292 53.8536 54.2212 55.7172 61.1556 72.5458]
    PredictorNames: {}
     UseCovariance: 1
                SE: [3.1073 3.1029 3.0949 3.0722 3.0304 2.8916 2.7921 3.0205 4.0866 5.5066]
      LambdaMinMSE: 0.0439
         Lambda1SE: 0.3402
       IndexMinMSE: 6
          Index1SE: 8

The Lambda field gives the 10 regularization constants tried by lasso. The DF field shows the number of 
degrees of freedom in the regularized models--this is the number of nonzero coefficients. Recall that our linear 
model used all 55 coefficients; the same is true for the model with the smallest regularization constant. As the 
regularization constant increases, the number of nonzero coefficients decreases.

Which regularization constant is best? We can turn to the SE field, which gives the standard error of the cross 
validation (5-fold cross validation, as we specified in our call to lasso). The smallest standard error occured 
with the 6th value in Lambda (given by IndexMinMSE), which is 0.0439 (LambdaMinMSE or Lambda(6)). This 
model would have 48 nonzero coefficents (DF(6)). However, our estimate of the model's accuracy contains 
some uncertainty. The lasso output also gives the standard error of the cross validation and tells us the largest 
value of Lambda that is within one standard error of the minimum (Lambda1SE). In many cases we would favor 
this value of Lambda (0.3402) over the true minimum (0.0439). Why?

The goal of this exercise is to reduce the variance of and improve the generalization of the model. While 
maintaining a low lambda reduces the error of our model, it can also lead to overfitting which prevents the 
model from producing accurate predictions on future data. While lambda = 0.0439 does offer the lowest MSE, 
it may not adequately penalize the larger coefficients or reduce the number of predictive variables to produce 
a generalizable model. By choosing the largest lambda within one SE of our minimum, we select a model with 
relatively low error and greater regularization. 

The matrix B returns the actual coefficients for each value of Lambda. Let's sort each model's coefficients by size 
and plot them to see the effects of regularization.

plot(sort(abs(B)))
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Warning: MATLAB has disabled some advanced graphics rendering features by switching to software OpenGL. For 
more information, click here.

Explain what you're seeing in this plot.

Each line in the plot corresponds to a specific lambda and is plotted for the 56 individual fitted coefficients along 
the x-axis and the absolute value of those fitted coefficients along the y-axis (order is not necessarily conserved 
so we are not always comparing the same coefficient at ‘x’ as we move between lines). The sorting function is 
used before plotting because we want to best visualize the variation of all coefficient values as lambda changes. 
We can see that as lambda increases, regularization becomes more apparent as more coefficients are reduced 
to zero and the remaining coefficients are diminished to values closer to zero.

Now we can identify the nonzero interactions from our regularized model. Let's put them in a table for display.

nonzeros = abs(B(:,8)) > 1e-5;
effect_size = B(nonzeros,8);
effect_name = treatment(nonzeros);
table(effect_name, effect_size)

ans = 25×2 table
effect_name effect_size

1 'C1' 5.7913

2 'C3' 1.8711

3 'C4' 4.4134
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effect_name effect_size

4 'G8' 0.0524

5 'OP' -0.0340

6 'TC' -1.8743

7 'TR' -0.2754

8 'C1:OP' 0.3665

9 'C1:TR' 5.9844

10 'C1:LN' 1.5149

11 'C3:G8' 0.4121

12 'C3:OP' -4.1638

13 'C3:FN' 1.2351

14 'C3:LN' 3.1175
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