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Part I of this book described methods for solving linear systems. These methods
are definite — the solvability theorems tell us if a system is solvable and exactly
how many solutions exist. The tools for linear systems are also constructive. If
solutions exist, we have deterministic methods to find them.

In Part II we turn our attention to nonlinear systems. The nonlinearities remove
the luxuries we encountered with linear systems. We will not know if a nonlinear
system is solvable or how many solutions exist. Even when a solution exists, we
will be forced to rely on iterative or stochastic methods to search for it.

There are nonlinear systems that are exempt from the above problems. The
linear least-squares problems of Chapter 8 are nonlinear (quadratic), but we used
the pseudoinverse to find a unique solution. In Chapter 11 we will see that the linear
least-squares problem belongs to a special class of nonlinear problems because it is
convex. Convex problems can be solved with relative ease, and learning to identify
and exploit convexity is a powerful tool for nonlinear systems.

We will focus on two nonlinear problems. The first is the root finding problem:
For a system of nonlinear equations g(x), what are the values of the vector x such
that g(x) = 0? The second problem is the optimization problem: Find a vector x that
minimizes the scalar function 5 (x). These two problems are related, and algorithms
that solve one problem can be used to solve the other. For example, consider a
continuously differentiable function 5 (x). If 5 has a minimum, it occurs when the
gradient of 5 is equal to the zero vector. Minimizing the function 5 is equivalent
to find a vector x such that g(x) = 0 when g is the gradient of 5 . Similarly, imagine
we want to find a zero of the nonlinear function g(x). If we define 5 (x) = kg(x)k,
then the zero of the function g corresponds to the point at the minimum of the
function 5 .

Solving nonlinear systems is more of an “art” than solving linear systems. We
will learn several strategies that work well for some problems but not for others.
There is no single best method for solving nonlinear problems, and we will focus
on the strengths and weaknesses of each technique. In practice, you will learn to
try methods that are inspired by the features of each problem.



Chapter 10

Root Finding

We’ve seen multiple methods for solving linear systems of equations. In this
chapter we develop a method to solve nonlinear systems of equations using linear
algebra. We begin with Newton’s method for finding the roots of a single nonlinear
equation. Then we generalize the method to systems of equations using a matrix
formalism.

10.1 Nonlinear Functions

A nonlinear function is, simply put, a function that fails the tests for linearity. You
might have been surprised that the affine function 6(G) = 0G+1 was nonlinear. The
functions 6(G) = cos G, 6(G) = G

2, and 6(G) = log G are all nonlinear with respect to
the independent variable G.

By convention we write nonlinear functions in the form

6(G) = 0

This convention is not a limitation, as any nonlinear function with a nonzero
right hand side can be rewritten by moving the right hand terms to the left side.
Writing nonlinear functions in this way lets us solve the function by identifying
values where the function equals zero, i.e. by finding the roots of the function. For
example, the equation

(G � 1)3 = 8

has a unique solution when G = 3. We can rewrite this equation as the function

6(G) = (G � 1)3 � 8 = 0

86
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Notice that the function 6(G) has a root when G = 3, which is also the solution to
the equation (G � 1)3 = 8.

Linear systems have exactly zero, one, or infinitely many solutions. By contrast,
nonlinear systems can have any number of solutions. The function 6(G) = G

2�4 has
two roots: G = 2 and G = �2. Unlike linear systems, there is no grand solvability
theorem for nonlinear systems. Except in special cases (for example, polynomials),
we cannot tell a priori how many unique solutions exist for a nonlinear equation.
Even when we know a solution exists, we do not have a general procedure like
Gaussian elimination for finding solutions to nonlinear equations. Instead, we
often rely on numerical techniques to find some of the roots of nonlinear functions.

10.2 Newton’s Method

Given a function 6(G), how do we find its roots? One powerful method builds on
an observation regarding the tangent lines of 6(G) near its roots. Imagine we are
at a point G0 that is near a root. The tangent line of 6(G) at the point G0 will itself
have a root that is closer to the root of 6(G). Let’s call this new point G1.

G1 G0

root

Figure 10.1: If a point G0 is close to the root
of a function (black), the tangent line (red) in-
tersects the horizontal axis at a point G1 that is
closer to the root.

If we draw another tangent line for 6 at G1, we see that the root of the tangent
line is again closer to the root of 6. We can repeat this procedure again and again,
each time moving closer to the root of 6. Rather than solve the nonlinear function
6, we only need to solve a series of affine equations describing the tangent line at
each iteration.

Let’s formalize the above procedure. The starting point G0, the values of 6 and
its derivative 6

0, and the root G1 of the tangent line are related by

6
0
(G0) =

6(G0)

G0 � G1

You can interpret this formula as “the slope of the tangent line at G0 (60(G0)) is equal
to the height of the function at G0 (6(G0)) divided by the distance between G0 and
G1.” Rearranging, we can find the root of the tangent line based on values at our In other words, the slope of the tangent line

6
0(G0) is its rise 6(G0) divided by its run (G0 �

G1).
current point.

G1 = G0 �
6(G0)

6
0(G0)

Now we know the location of G1, a point closer to the root of the original function
6. We can apply the same procedure starting at G1 to find a closer point G2, and so
on. Newton published a very limited version of

the method that bears his name. British math-
ematician Thomas Simpson was the first to ap-
ply the technique to general systems of non-
linear equations. He also noted connections
between nonlinear systems and optimization.
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G2 = G1 �
6(G1)

6
0(G1)

G3 = G2 �
6(G2)

6
0(G2)

.

.

.

G=+1 = G= �
6(G=)

6
0(G=)

10.3 Convergence of Newton’s Method

root

5 5.5 6 6.5 7

�5

0

5

10

G

6
(
G
)

Figure 10.2: The function 6(G) = (G � 4)3 � 2G
has a root between G = 6 and G = 6.5.

Let’s find a root for the equation

6(G) = (G � 4)3 � 2G

By plotting the function, we see there is a root somewhere between G = 6 and
G = 6.5. We can use Newton’s Method to find a more precise estimate of the root.
We first calculate the derivative

6
0
(G) = 3(G � 4)2 � 2

Let’s choose our initial guess to be G0 = 6.0. We’re ready to calculate G1.

G1 = G0 �
6(G0)

6
0(G0)

= G0 �
(G0 � 4)3 � 2G0
3(G0 � 4)2 � 2

= 6.0 �
(6.0 � 4)3 � 2(6.0)

3(6.0 � 4)2 � 2
= 6.4

We can check if we’ve found a root by evaluating 6(G1). If G1 is a root, 6(G1) should
equal zero.

6(G1) = 6(6.4) = 1.024 < 0
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We haven’t arrived at a root yet. Let’s try another iteration of Newton’s method to
find a second guess (G2) using G1.

G2 = G1 �
6(G1)

6
0(G1)

= G1 �
(G1 � 4)3 � 2G1
3(G1 � 4)2 � 2

= 6.4 �
(6.4 � 4)3 � 2(6.4)

3(6.4 � 4)2 � 2
= 6.332984293

The new value G2 is closer to being a root: 6(6.332984293) = 0.03203498. We can When studying numerical methods we will ex-
tend our answers far beyond the number of sig-
nificant figures. As engineers we later trim or
truncate our answers to an appropriate number
of significant figures based on the uncertainty
in the system.

always move closer using more iterations as shown in the following table.

8 G8 6(G8)

0 6 -4
1 6.4 1.024
2 6.332984293 0.032034981
3 6.330748532 0.000034974
4 6.330746086 4.18421⇥10�11

Newton’s method converges quadratically once the G8 are close to the actual
root. “Close” is not well defined and varies with each function. If an initial guess The quadratic convergence stems from our use

of a linear approximation for the function, leav-
ing a residual bounded by the quadratic terms.

is far from the true root, Newton’s method can either 1.) converge slowly until it
becomes close enough for quadratic converge to kick in, or 2.) not converge at all.
If Newton’s method is converging slowly or diverges, you should try a different
initial guess.

10.4 Multivariable Functions

Newton’s method works well for nonlinear functions of a single variable. We
use a variant of Newton’s method to solve multivariable functions. Multivariable Multivariable functions are also called multi-

variate or vector-valued functions.functions accept a vector of inputs and produce a vector of outputs. We write
the names of multivariable functions using bold, non-italicized font — g(x) — to
remind us that a multivariable functions return a vector of outputs.

We’re already familiar with linear multivariable functions like g(x) = Ax. This
function accepts a vector of inputs (x) and returns another vector of outputs (Ax).
We can also define nonlinear multivariable functions. An example with three
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inputs and three outputs is

g(x) = ©≠
´

G1 � G3
G

2
3 + 2G2
cos G1

™Æ
¨

If x = ©≠
´

0
�1

2

™Æ
¨
, then

g(x) = ©≠
´

0 � 2
22 + 2(�1)

cos 0

™Æ
¨
= ©≠

´
�2

2
1

™Æ
¨

It’s sometimes convenient to talk individually about the entries in the nonlinear
function. We can write a multivariable function using the following notation We use lowercase and italicized font (68 ) when

referencing individual entries in a multivari-
able function since each entry produces only a
single output.

g(x) =
©≠≠≠≠
´

61(G1 , G2 , . . . , G=)
62(G1 , G2 , . . . , G=)

.

.

.

6=(G1 , G2 , . . . , G=)

™ÆÆÆÆ
¨

For the example above, 61 = G1 � G3; 62 = G
2
3 + 2G2; and 63 = cos G1.

10.5 The Jacobian Matrix

For functions of a single variable, Netwon’s method uses the derivative to construct
a linear approximation. The multivariable analog of the derivative is matrix of
partial derivatives called the Jacobian, which we write as J(x). The Jacobian is named after German mathe-

matician Carl Gustav Jacob Jacobi. I assume
it is based on his last name, or possibly his
second-to-last name.

J(x) =

©≠≠≠≠≠≠≠
´

%61
%G1

%61
%G2

· · ·
%61
%G=

%62
%G1

%62
%G2

· · ·
%62
%G=

.

.

.

.

.

.

.
.
.

.

.

.

%6=
%G1

%6=
%G2

· · ·
%6=
%G=

™ÆÆÆÆÆÆÆ
¨

The (8,9)th entry in the Jacobian is the partial derivative of the 8th function with
respect to the 9th variable. If a multivariable function has = inputs and = outputs,
its Jacobian is a square = ⇥ = matrix.
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Let’s compute the Jacobian for the function g(x) = ©≠
´

G1 � G3
G

2
3 + 2G2
cos G1

™Æ
¨
.

J(x) =

©≠≠≠≠≠≠
´

%
%G1

(G1 � G3)
%

%G2
(G1 � G3)

%
%G3

(G1 � G3)

%
%G1

�
G

2
3 + 2G2

� %
%G2

�
G

2
3 + 2G2

� %
%G3

�
G

2
3 + 2G2

�
%

%G1
(cos G1)

%
%G2

(cos G1)
%

%G3
(cos G1)

™ÆÆÆÆÆÆ
¨

= ©≠
´

1 0 �1
0 2 2G3

� sin G1 0 0

™Æ
¨

10.6 Multivariable Newton’s Method

For functions of a single variable, Newton’s method iterates with the formula

G8+1 = G8 �
6(G8)

6
0(G8)

Using a multivariable linear approximation, we can define the multivariable ana-
logue of Newton’s method.

x8+1 = x8 � J�1
(x8)g(x8)

As an example, let’s find a root of the function

g =
✓

G1G2 � 2
�G1 + 3G2 + 1

◆

First we calculate the Jacobian matrix.

J(x) =
✓
G2 G1
�1 3

◆
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Using an initial guess of x0 =
✓
�1
�1

◆
we begin iterating.

x1 = x0 � J�1
(x0)g(x0)

=
✓
�1
�1

◆
�

✓
�1 �1
�1 3

◆�1 ✓
(�1)(�1) � 2

�(�1) + 3(�1) + 1

◆

=
✓
�2
�1

◆

Now we use x1 to find the next guess x2.

x2 = x1 � J�1
(x1)g(x1)

=
✓
�2
�1

◆
�

✓
�1 �2
�1 3

◆�1 ✓
(�2)(�1) � 2

�(�2) + 3(�1) + 1

◆

=
✓
�2
�1

◆

Our guess x2 is exactly equal to the previous guess x1. Since our guess didn’t
change we are probably at a root. We can check by evaluating g(x2).

g(x2) =
✓

(�2)(�1) � 2
�(�2) + 3(�1) + 1

◆
=

✓
0
0

◆

Indeed, the vector
✓
�2
�1

◆
is a solution to our equation.

Nonlinear systems often have many solutions. Newton’s method converges to

the solution nearest the initial guess. If we chose the point
✓
1
1

◆
as our initial guess, “Nearest” in the topological sense, i.e. the so-

lution that is down the gradient of the function
at the initial guess.

Newton’s method on the same function would converge to the root x =
✓

3
2/3

◆
after

four iterations.

10.7 * Gauss-Newton Method

The multivariate Newton’s method assumes that the inputs and outputs of the
function g have the same dimension. If the dimensions disagree, the Jacobian
matrix will not be square and its inverse will not be defined. In some cases,
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we can apply a related method — the Gauss-Newton Method — that uses the
pseudoinverse of the nonsquare Jacobian.

x8+1 = x8 � J+(x8)g(x8)

For convergence, we require that the function g accepts an =-dimensional input
vector and outputs an <-dimensional vector, where < > =.

10.8 Root Finding with Finite Differences

In all of our examples we have been able to calculate the derivative of the function 6

(or the Jacobian of multivariate function g) using calculus. This is not always
possible. Sometimes the function 6 is unknown to us or is very complicated.
Sometimes 6 is a simulation that includes random numbers, like a traffic simulator
that models random arrivals and departures of cars. In this case we cannot calculate
the derivative without knowing what random numbers will appear when the
function is later evaluated.

An alternative is to use finite differences to approximate the derivative. Recall
from Chapter 5 that the derivative 6

0(G) can be approximated by

6
0
(G) ⇡

6(G + �G) � 6(G)

�G

for some small value �G. Let’s return to an example from earlier in this chapter:

6(G) = (G � 4)3 � 2G

We can approximate the derivative at G = 1 with �G = 0.1.

6
0
(1) ⇡

6(1.1) � 6(1)
0.05

=
(1.1 � 4)3 � 2(1.1) � (1 � 4)3 + 2(1)

0.1
= 24.0

The actual value of the derivative at G = 1 is

6
0
(1) = 3(1 � 4)2 � 2

= 25

The accuracy of our approximation depends on both the size of the perturba-
tion �G and on the nonlinearity of the function. Using �G = 0.01 puts us closer to
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the correct value of the derivative (60(G) ⇡ 25), while a perturbation of �G = 0.2
makes the approximation worse (60(G) ⇡ 23). This is a big problem when the
function 6 is stochastic, meaning it depends on random values. Stochastic func-
tions are “noisy” and their outputs always include error. Making the perturbation
smaller can amplify the effects of this error, but large perturbations will lead to a
poor approximation of the derivative. One solution is to construct our approxi-
mation of the derivative using multiple finite difference measurements. Multiple
measurements can average out the error, but they require more computation.

In addition to numerical issues, a finite difference approximation can be expen-
sive to evaluate for multivariate functions. To approximate a partial derivative we
perturb the vector x along a single dimension. We can write the perturbation using
the Cartesian unit vectors

%6

%x8
⇡

6(x + �ê8) � 6(x)
�

where the scalar � is the perturbation size. Every entry in the Jacobian must be
approximated using a function evaluation with a perturbed input. The Jacobian
of an =-dimensional function has =

2 entries, so a finite difference approximation
requires =2 function evaluations.

A more recent solution is a technique called automatic differentiation, also known
as “autodiff” or “autograd” (which is short for automatic gradient). Automatic
differentiation uses specialized software to compute derivatives by tracking the
mathematical operations in a function and applying the chain rule. Automatic
differentiation is available in many state-of-the-art machine learning packages.
It can calculate the true derivative of a function when applied correctly. Many
implementations include an option to check the automatic differentiation results
using finite differences.

10.9 Practical Considerations

Solving nonlinear equations is an art. Here are some tips.

• Nonlinear equations rarely have a single solution. Solvers try many (hun-
dreds or thousands) of initial guesses to find several solutions. There is no
general method for determining the total number of roots for a nonlinear
system.

• Software packages like M�����’s fsolve function can find roots with a variety
of algorithms. Many techniques find points near roots and use Newton’s
method to finish the search.
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• Software packages often allow users to provide both the function and the
Jacobian. Knowing the Jacobian explicitly almost always improves speed
and numerical stability. If the user doesn’t provide a Jacobian, the software
will estimate the Jacobian at every iteration using finite differences.

• Single variable Newton’s method requires the function be continuously differ-
entiable. Multivariable functions require the Jacobian be invertible. So-called
“gradient free” algorithms are available for functions with poorly behaving,
computationally expensive, or discontinuous derivatives.

• The multivariable Newton’s method involves inverting the Jacobian, which
is computationally expensive. Instead, numerical solvers rearrange the iter-
ation equation:

x8+1 = x8 � J�1
(x8)g(x8)

J(x8)x8+1 = J(x8)x8 � J(x8)J�1
(x8)g(x8)

J(x8) (x8+1 � x8) = �g(x8)

In this form, the solver can use Gaussian elimination on the augmented
matrix [J(x8) � g(x8)] to solve for x8+1 � x8 ; adding x8 gives the new estimate
for x8+1.



Chapter 11

Optimization and Convexity

We formulated the least squares method and linear regression as optimization
problems. Our goal was to minimize the sum of the squared errors by choosing
parameters for the linear model. Optimization problems have enormous utility in
data science, and most model fitting techniques are cast as optimizations. In this
chapter, we will develop a general framework for describing and solving several
classes of optimization problems. We begin by reviewing the fundamentals of
optimization. Next, we discuss convexity, a property that greatly simplifies the
search for optimal solutions. Finally we derive vector expressions for common
geometric constructs and show how linear systems give rise to convex problems.

11.1 Optimization G

5 (G)

� 5 (G)

maximum

minimum

Figure 11.1: The maximum of a function 5 (G)

can be found by minimizing � 5 (G).

Optimization is the process of minimizing or maximizing a function by selecting
values for a set of variables or parameters (called decision variables). If we are
free to choose any values for the decision variables, the optimization problem
is unconstrained. If our solutions must obey a set of constraints, the problem is
a constrained optimization. In constrained optimization, any set of values for the
decision variables that satisfies the constraints is called a feasible solution. The goal
of constrained optimization is to select the “best" feasible solution.

Optimization problems are formulated as either minimizations or maximiza-
tions. We don’t need to discuss minimization and maximization separately, since
minimizing 5 (G) is equivalent to maximizing� 5 (G). Any algorithm for minimizing
can be used for maximizing by multiplying the objective by �1, and vice versa. For
the rest of this chapter, we’ll talk about minimizing functions. Keep in mind that
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everything we discuss can be applied to maximization problems by switching the
sign of the objective.

local
max

local
min

global
max

global
min

local argmax

local argmin

global argmax

global argmin

Figure 11.2: Minima and maxima of a function
can be local or global.

During optimization we search for minima. A minimum can either be locally

or globally minimal. A global minimum is has the smallest objective value of any
feasible solution. A local minimum has the smallest objective value for any of the
feasible solutions in the surrounding area. The input to a function that yields the
minimum is called the argmin, since it is the argument to the function that gives the
minimum. Similarly, the argmax of a function is the input that gives the function’s
maximum. Consider the function 5 (G) = 3 + (G � 2)2. This function has a single
minimum, f(2) = 3. The minimum is 3, while the argmin is G = 2, the value of
the decision variable at which the minimum occurs. For optimization problems,
the minimum (or maximum) is called the optimal objective value. The argmin (or
argmax) is called the optimal solution.

1 2 3 40

2

4

6

G

5 (G)

Figure 11.3: The function 5 (G) = 3 + (G � 2)2
has a minimum of 5 = 3 at argmin G = 2.

11.1.1 Unconstrained Optimization
You already know how to solve unconstrained optimization problems in a single
variable: set the derivative to the function equal to zero and solve. This method
of solution relies on the observation that both maxima and minima occur when
the slope of a function is zero. However, it is important to remember that not
all roots of the derivative are maxima or minima. Inflection points (where the
derivative changes sign) also have derivatives equal to zero. (Any point where
the derivative of a function equals zero is called an extreme point or extremum.
Setting the derivative of a function equal to zero and solving for the extrema is
called extremizing a function.) You must always remember to test the root of the
derivative to see if you’ve found a minimum, maximum, or inflection point. The
easiest test involves the sign of the second derivative. If the second derivative at
the point is positive, you’ve found a minimum. If it’s negative, you’ve found a
maximum. If the second derivative is zero, you’ve found an inflection point.

A similar approach works for optimizing multivariate functions. In this case
one solves for points where the gradient is equal to zero, checking that you’ve not
found an inflection point (called “saddle points” in higher dimensions).

11.1.2 Constrained Optimization

1 2 3 40

2

4

6

G

5 (G)

Figure 11.4: The yellow region is the feasible
space (G  1). The global argmin occurs at
G = 1. The derivative of the function is not
zero at this point.

Constrained optimization problems cannot be solved by finding roots of the deriva-
tives of the objective. Why? It is possible that the minima or maxima of the un-
constrained problem lie outside the feasible region of the constrained problem.
Consider our previous example of 5 (G) = 3 + (G � 2)2, which we know has an
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argmin at G = 2. Say we want to solve the constrained problem

min 5 (G) = 3 + (G � 2)2 s.t. G  1

The root of the derivative of 5 is still at G = 2, but values of G greater than one are
not feasible. From the graph we can see that the minimum feasible value occurs at
G = 1. The value of the derivative at G = 1 is �2, not zero.

In general, constrained optimization is a challenging field. Finding global
optima for constrained problems is an unsolved area or research, one which is
beyond the scope of this course. However, there are classes of problems that we
can solve to optimality using the tools of linear algebra. These problems form the
basis of many advanced techniques in data science.

11.2 Convexity

Many “solvable” optimization problems rely on a property called convexity. Both
sets and functions can be convex.

11.2.1 Convex sets
A set of points is convex if given any two points in the set, the line segment
connecting these points lies entirely in the set. You can move from any point
in the set to any other point in the set without leaving the set. Circles, spheres, and
regular polygons are examples of convex sets.

G

H

G

H

G

H

G

H

Figure 11.5: The blue shapes are convex. The
red shapes are not convex.To formally define convexity, we construct the line segment between any two

points in the set.

Definition. A set ( is convex if and only if given any x 2 ( and y 2 ( the points

⌫x + (1 � ⌫)y are also in ( for all scalars ⌫ 2 [0, 1].

G

⌫
G +

(1 � ⌫)H H

Figure 11.6: The segment connecting G and H

can be defined as ⌫G + (1 � ⌫)H for ⌫ 2 [0, 1].

The expression ⌫x + (1 �⌫)y is called a convex combination of x and y. A convex
combination of two points contains all points on the line segment between the
two points. To see why, consider the 1-dimensional line segment between points 3
and 4.

⌫(3) + (1 � ⌫)(4) = 4 � ⌫, ⌫ 2 [0, 1]

When ⌫ = 0, the value of the combination is 4. As ⌫ moves from 0 to 1, the value
of the combination moves from 4 to 3, covering all values in between.
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Convex combinations work in higher dimensions as well. The convex combi-

nation of the vectors
✓
1
0

◆
and

✓
0
1

◆
is

⌫

✓
1
0

◆
+ (1 � ⌫)

✓
0
1

◆
=

✓
⌫

1 � ⌫

◆

The combination goes from the first point
✓
0
1

◆
when ⌫ = 0 to the second point

✓
1
0

◆

when ⌫ = 1. Halfway in between, ⌫ = 1/2 and the combination is
✓
1/2
1/2

◆
, which is

midway along the line connecting
✓
1
0

◆
and

✓
0
1

◆
. Sometimes it is helpful to think of

a convex combination as a weighted sum of x and y. The weighting (provided by
⌫) moves the combination linearly from y to x as ⌫ goes from 0 to 1.

G

⌫ = 0.3
⌫ = 0.5

⌫ = 0.8

H

Figure 11.7: A convex combination in 2D:
⌫G + (1 � ⌫)H.

11.2.2 Convex functions
There is a related definition for convex functions. This definition formalizes our
visual idea of convexity (lines that curve upward) and concavity (lines that curve
downward).

convex concave

Figure 11.8: Convex functions curve upward.
Concave functions curve downward.

Definition 1. A function 5 is convex if and only if

5 (⌫x + (1 � ⌫)y)  ⌫ 5 (x) + (1 � ⌫) 5 (y), ⌫ 2 [0, 1]

G H

5 (
⌫G

+
(1 �

⌫)H
)

⌫ 5
(G
) +

(1 �
⌫)
5
(H
)

⌫G + (1 � ⌫)H

Figure 11.9: The chord connecting any two
points of a convex function (red) lies above the
function (blue).

This definition looks complicated, but the intuition is simple. If we plot a
convex (upward curving) function, any chord – a segment drawn between two
points on the line – should lie above the line. We can define the chord between any
two points on the line, say 5 (x) and 5 (y) as a convex combination of these points,
i.e. ⌫ 5 (x) + (1 � ⌫) 5 (y). This is the right hand side of the above definition. For
convex functions, we expect this cord to be greater than or equal to the function
itself over the same interval. The interval is the segment from x to y, or the convex
combination⌫x+(1�⌫)y. The values of the function over this interval are therefore
5 (⌫x + (1 � ⌫)y), which is the left hand side of the definition.

11.2.3 Convexity in Optimization
Why do we care about convexity? In general, finding local optima during optimiza-
tion is easy; just pick a feasible point and move downward (during minimization)
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until you arrive at a local minimum. The truly hard part of optimization is find-
ing global optima. How can you be assured that your local optimum is a global
optimum unless you try out all points in the feasible space?

Fortunately, convexity solves the local vs. global challenge for many important
problems, as we see with the following theorem.

Theorem. When minimizing a convex function over a convex set, all local minima are

global minima.

Convex functions defined over convex sets must have a special shape where
no strictly local minima exist. There can be multiple local minima, but all of these All local minima are less than or equal to the

global minimum. Strictly local minima must
be less than the global minimum.

local minima must have the same value (which is the global minimum).
Let’s prove that all local minima are global minima when minimizing a convex

function over a convex set.

Proof. Suppose the convex function 5 has a local minimum at x0 that is not the
global minimum (which is at x⇤). By the convexity of 5 ,

5 (⌫x0 + (1 � ⌫)x⇤)  ⌫ 5 (x0) + (1 � ⌫) 5 (x⇤)

Since x0 is at a local, but not global, minimum, we know that 5 (x0) > 5 (x⇤). If we
replace 5 (x⇤) on the right hand side by the larger quantity 5 (x0), the inequality ()
becomes a strict inequality (<). (Even if both sides were equal, adding a small
amount to the right hand side would still make it larger.) We now have

5 (⌫x0 + (1 � ⌫)x⇤) < ⌫ 5 (x0) + (1 � ⌫) 5 (x0)

which, by simplifying the right hand side, becomes

5 (⌫x0 + (1 � ⌫)x⇤) < 5 (x0)

This statement says that the value of the function 5 on any point on the line segment For a simpler, yet less intuitive argument, let
⌫ = 1. Then the inequality becomes 5 (x0) <
5 (x0), which is nonsense.

from x0 to x⇤ is less than the value of the function at x0. If this is true, we can find a
point arbitrarily close to x0 that is below our supposed local minimum 5 (x0). Clearly,
5 (x0) cannot be a local minimum if we can find a lower point arbitrarily closer to it.
Our conclusion contradicts our original supposition. No local minimum can exist
that are not equal to the global minimum. ⇤

The previous proof seemed to rely only on the convexity of the objective func-
tion, not on the convexity of the solution set. The role of convexity of the set is
hidden. When we make an argument about a line drawn from the local to the
global minimum, we assume that all the points on the line are feasible. Otherwise,
it does not matter if they have a lower objective than the local minimum, since they
would not be allowed. By assuming the solution set is convex, we are assured that
any point on this line is also feasible.
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11.2.4 Convexity of Linear Systems
This course focuses on linear functions and systems of linear equations. It would
be enormously helpful if linear functions and the solution set of linear systems
were convex. Then we can look for local optima during optimization and know
that we’ve found global optima.

Let’s first prove the convexity of linear functions. For a function to be convex,
we require that a line segment connecting any two points in the line lie above
or one the line. For linear functions, this is intuitively true. The line segment
connecting any two points is the line itself, so it always lies on the line. As a more
formal argument, we describe a linear function as the product between a vector
of coefficients c and x, i.e. 5 (x) = cTx. Let’s start with the values of the function By convention, all vectors are column vectors,

including c; this requires a transposition to be
conformable for multiplication by x.

over the range spanned by arbitrary points x and y. The segment of the domain
corresponds to the convex combination ⌫x + (1 � ⌫)y. The values of the function
over this interval are

5 (⌫x + (1 � ⌫)y) = cT
(⌫x + (1 � ⌫)y)

= cT⌫x + cT
(1 � ⌫)y

= ⌫cTx + (1 � ⌫)cTy
= ⌫ 5 (x) + (1 � ⌫) 5 (y)

which satisfies the definition of convexity: 5 (⌫x + (1 � ⌫)y)  ⌫ 5 (x) + (1 � ⌫) 5 (y).
Now let’s turn to a linear system Ax = b. We want to show that the set of Following the conventions of the optimization

field, we call the right hand side of linear sys-
tems the column vector b, not y as we have said
previously.

all solutions for this system (the solution space) is convex. Let’s assume we have
two points in the solution space, x and y. Since x and y are solutions, we know
that Ax = b and Ay = b. If the solution set is convex, any point in the convex
combination of x and y is also a solution.

A(⌫x + (1 � ⌫)y) = A⌫x = A(1 � ⌫)y
= ⌫Ax + (1 � ⌫)Ay
= ⌫b + (1 � ⌫)b
= b

Since A(⌫x+ (1�⌫)y) = b, we know that all points on the line between x and y are
solutions, so the solution set is convex.



Chapter 12

Gradient Descent

It’s time to formalize the walking downhill method of optimization. This sec-
tion introduces the gradient descent method, an iterative technique that takes steps
downhill until a local minimum is found. As we will see in the coming chapters,
gradient descent is not a single algorithm but instead a family of related algo-
rithms. The defining feature of gradient descent is the use of local curvature of the
objective function — the gradient — to identify the downhill direction.

12.1 Optimization by Gradient Descent

Let’s begin with some notation. Our goal is to solve the problem

min
x

5 (x),

which is read “minimize, by choice of x, the function 5 (x)”. We are searching for an
input vector x that minimizes the scalar-valued function 5 . Optimization problem
require that the objective function 5 be scalar-valued. If the objective is a multivariate function f, we

can minimize kfk instead.Gradient descent is an iterative technique. We begin with an initial guess x(0),
we find a sequence of better guesses

x(0) ! x(1) ! x(2) ! · · · ! x(:�1)
! x(:)

so that each guess decreases the objective function:

5 (x(0)) > 5 (x(1)) > 5 (x(2)) > · · · > 5 (x(:�1)
) > 5 (x(:)).

We keep iterating with gradient descent until there is no downhill direction, at
which point we are by definition at a local minimum. The final guess x(:) will be
the local argmin.
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The key to gradient descent is the update rule, a formula that tells us how to
pick a next guess from the current guess. Imagine we are in the middle of gradient
descent at guess x(:). The update rules says that the next guess x(:+1) will be our
current guess plus a step in the downhill direction, or

x(:+1) = x(:) +
�
downhill step

�
.

Whatever this “downhill step” is, we can already see that it must be a vector. The
current guess x(:) is a vector, and addition is only defined if the downhill step is a
vector of the same size. Each entry in the downhill step vector is a downhill step
for the corresponding entry in our guess x(:).

It helps to break the downhill step vector into two parts: a vector that points in
the downhill direction, and a scalar that represents the size of the step we’ll take.
We can rewrite the update rule as a product of these two parts:

x(:+1) = x(:) +
�
step size

�
(downhill direction) .

The step size is simply a scalar, so let’s call it � and forget about it for a while. The
step size is a hyperparameter of gradient descent. A hyperparameter is a variable in
a training algorithm that is not a parameter of the model. Hyperparameters affect
how a model is trained but are not used to make predictions once the training is
complete. We’ll have much more to say about the step size hyperparameter later
in the chapter. For now, our update rule is

x(:+1) = x(:) + � (downhill direction) .

G

5 (G)

Figure 12.1: The gradient points in the uphill
direction. The red tangent line has a positive
gradient (slope), but the downhill direction is
in the negative direction. The blue tangent
line has a negative gradient but the downhill
direction points toward +G.

What direction is downhill? We can find a direction that decreases the objective
function 5 using its gradient. Let’s define the function g(x) to be the gradient of
the function 5 . Notice how the function g is vector-valued (and therefore written
in bold font). The gradient is a vector of partial derivatives, one for every input:

g(x) =

©≠≠≠≠≠
´

% 5
%G1
% 5
%G2
.
.
.

% 5
%G=

™ÆÆÆÆÆ
¨
.

Importantly, the gradient points uphill, not downhill, as shown in Figure 12.1.
The downhill direction is the negative of the gradient: �g(x).

Putting everything together, our final update rule is

x(:+1) = x(:) � � g(x(:)) (12.1)
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where g(x(:)) is the gradient of the objective function evaluated at the current
iterate x(:). We’ll see this update rule repeatedly, and we must remember the
origin of the minus sign. The new iterate x(:+1) is the previous iterate x(:) plus a
step in the downhill direction; however, the downhill direction is �g(x(:)), and the
negative sign on the gradient can mislead us into thinking that we’re subtracting,
rather than adding, a step in the downhill direction. If you find yourself forgetting
why there’s a minus sign, just remember that the update rule can also be written
x(:+1) = x(:) + � (�g(x(:))).

In multivariable calculus you may have written the gradient of a function 5 (x)
as r 5 (x). We avoid this notation in favor of g(x) for three reasons.

1. The symbol g(x) is simpler and can be bolded to remind us that the gradient
is a vector.

2. It emphasizes the connection between optimization and root finding using
the gradient (g(x) = 0).

3. Some gradient descent algorithms do not use the true gradient of the objective
function, instead relying on an approximation or estimate of the gradient. We
can think of the function g(x) as any “gradient-like” thing and still use the
update rule in equation (12.1).

Let’s stop for some examples. The first example is a the one-dimensional
polynomial

5 (G) = G
4
� 2G3

� 23G2
+ 24G + 147.

We can use gradient descent to find a local minimum beginning with the guess
G
(0) = 2. In one dimension, the gradient of 5 (G) is the ordinary derivative

6(G) =
35

3G

= 4G3
� 6G2

� 46G + 24.

Let’s assume we’re given a step size � = 0.01; we’ll play around with the step size
later. We begin iterating with our update rule.

G
(1) = G

(0)
� � 6(G

(0)
)

= 2 � 0.01 6(2)
= 2.6

The initial iterate G
(0) had an objective value of 5 (G(0)) = 103. After one round of

gradient descent, the next iterate (G(1) = 2.6) decreased the objective function to
5 (G(1)) = 64.4656. The following tables shows the results of the first eight iterations.
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Iteration G 5 (G)

0 2 103
1 2.6 64.46560
2 3.25856 24.53280
3 3.77059 5.41262
4 3.97379 3.03341
5 3.99919 3.00003
6 3.99998 3.00000
7 4.00000 3.00000
8 4.00000 3.00000

12.2 Linear Least-squares with Gradient Descent

As a second example, let’s fit a linear model using gradient descent. As we
learned in Chapter 8, the linear regression problem y = X# can be solved by
pseudoinverting the design matrix X to find the parameter estimates # = X+y.
Pseudoinversion gives the least-squares estimates for the parameters #, and the
same solution can be obtained by minimizing the loss function

!(#) =
1
2

=’
8=1

⇣
H

pred
8

� H
true
8

⌘2

Let’s solve the linear regression problem using gradient descent on the loss func-
tion. In the univariate case with an intercept, our linear model takes the form
H

pred = �0 + �1G. Using the five data points from the table on page 59, our loss
function is

!(#) =
1
2

5’
8=1

�
�0 + �1G8 � H

true
8

�2

Be careful with the notation here. The function we are minimizing is the loss ! (not
5 as before), and we are searching for a parameter vector # to minimize the loss.
As for all linear regression problems, the pairs of data (G8 , H8) are known.

Our first step is to calculate the gradient of the loss function

g(#) =

 
%!
%�0
%!
%�1

!
.
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Following the procedure in Section 8.3 for taking derivatives of sums, the entries
in the gradient function are

%!
%�0

=
5’
8=1

�
�0 + �1G8 � H

true
8

�

and
%!
%�1

=
5’
8=1

�
�0 + �1G8 � H

true
8

�
G8 .

The update rule for gradient descent is

#(:+1) = #(:)
� � g(#(:)

),

remembering again that we are iterating over the parameters #, not x. We need an
initial guess for the parameters, and lacking any insight from the problem we will
choose the zero vector: #(0) = 0. Using a step size � = 0.1, we can begin iterating.

Iteration Loss �0 �1

0 1.1375 0.0 0.0
50 0.0599557 0.0979449 1.04396
100 0.0544082 0.0332741 1.17936
150 0.0542539 0.0224895 1.20194
200 0.0542496 0.0206910 1.20571
250 0.0542495 0.0203911 1.20634
300 0.0542495 0.0203411 1.20644
350 0.0542495 0.0203327 1.20646
400 0.0542495 0.0203313 1.20646
450 0.0542495 0.0203311 1.20646
500 0.0542495 0.0203311 1.20646

Gradient descent found the same parameters as pseudo-inversion for our linear
regression example. This is expected since the least-squares problem is convex and
has a unique solution. Gradient descent terminates at a local minimum, and all
local minima are global minima for convex problems. If gradient descent works so
well, why don’t we use it on linear least-squares problems in practice? There are
two reasons:

1. Statistics of the parameters (?-values, confidence intervals, etc.) are computed
from matrices that are also used to find the pseudoinverse. If we used
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gradient descent on a linear regression problem, we would need to perform
most of the pseudoinverse calculation anyway.

2. Gradient descent requires an initial parameter guess and a value for the step
size hyperparameter. Both of these can be avoided by pseudoinversion.

Still, gradient descent plays an important role in regression. In the coming
chapters we will introduce two powerful extensions to linear models — logistic
regression and regularized regression — that cannot be fit using pseudoinversion.
We will use gradient descent to parameterize these models.

12.3 Termination Conditions

Using the update rule (equation (12.1)) we can always find a next estimate of the
input that is closer to a local argmin. In both of the previous examples, however, the
iterates became so close to the local argmin that iterates stopped moving. Gradient
descent conveniently self-terminates once we find a local minimum. To see why,
consider the update rule x(:+1) = x(:) � � g(x(:)). Imagine if x(:) is exactly a local
argmin. The gradient is flat in all direction at a local minimum, so g(x(:)) = 0.
Therefore, the update rule says that

x(:+1) = x(:) � � g(x(:))

= x(:) � 0
= x(:)

and the next iterate remains at the local argmin.
Self-termination is convenient, but it is rarely practical. Gradient descent ter-

minates only when the gradient is exactly zero, so termination requires we land
exactly on the a local argmin (or at least land within the precision of the computer).
Usually we’re not so lucky. Also, self-termination requires the gradient to shrink
nicely to zero in a small region around the local argmin. As we will see in Chap-
ter 14, there are many important optimization problems where such continuity is
not guaranteed.

Alternatively, we can terminate gradient descent when we are satisfactorily
near a local minimum. Two criteria are commonly used to halt gradient descent:

1. Iterate convergence. As we approach a local minimum and the gradient
shrinks, the steps between iterates should also decrease. One strategy is to
terminate gradient descent if the iterate x(:+1) is very close to x(:). Formally,
we define some small value & and stop iterating if

��x(:+1) � x(:)
�� < &. Any
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norm (1-norm or 2-norm) will work, but a common choice is the max-norm
(1-norm) that measures the maximum distance between any corresponding
elements in x(:+1) and x(:). The max-norm will keep gradient descent running
if at least one dimension is still moving.

2. Objective convergence. The value of the objective function should also
stop changing as gradient descent approaches a local minimum. A second
termination strategy is to stop iterating when

��
5 (x(:+1)

) � 5 (x(:))
�� < &

for some small number &. Terminating based on the objective value avoids
the need to choose a norm since the objective function is always scalar-
valued. However, a large change in the input to a function may lead to a
small change in the objective value, so the objective convergence method
may cause gradient descent to terminate while the iterates are still changing.

Both iterate and objective convergence have weaknesses. For example, objective
convergence should not be used if the objective function is very flat, and iterate
convergence can fail to terminate if the gradient is discontinuous near the local
minimum. Some software packages apply both tests and terminate if either the
iterates or objective values converge.

If the gradient is zero at a local minimum, why can’t we use the magnitude of
the gradient as a termination test? There are at least two reasons to avoid testing
the gradient. First, it is common to use gradient descent with only an estimate of
the gradient, and this estimate may not vanish completely at the local minimum.
Second, terminating based on the gradient assumes the gradient is continuous and
defined near the local argmin. As we’ll see later, we can still solve optimization
problems with gradient descent even if none of these conditions hold.

12.4 * Step Sizes

Walking downhill via gradient descent will bring us closer to a local minimum, but
we also need to stop walking once we reach the bottom. The process of stopping
at a local minimum is called convergence. We need some assurance that gradient
descent will converge. We want our steps to become smaller as we approach the
local minimum and disappear completely if we happen to arrive exactly at the local
minimum. Conversely, if we are far away from the local minimum, we want to
take large steps so we reach the local minimum in a reasonable amount of time.
Think about finding a parking space for your car. You drive relatively quickly up
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and down the lanes of the parking lot until you close in on an open spot; then you
slow down considerably to avoid hitting adjacent cars when entering the spot.

The step taken during each iteration of gradient descent is the product of two
parts: a step size � and the direction g. We have two methods of altering the length
of the step at each iteration: 1.) decrease the step size � as the iterations increase,
or 2.) decrease the magnitude of the gradient. Let’s consider each method, starting
with the step size.

12.4.1 * Step Size Scheduling
Gradient descent moves us closer to a local minimum at each iteration, so decreas-
ing the step size � at each iteration will force us to take smaller steps as we get
closer to the local minimum. The problem is timing these two events. We cannot
say in advance how many iterations we need to get close to the local minimum.
Decreasing the step size early on will slow convergence, but decreasing it too late
can make us overshoot or zigzag around the local minimum.

Changing the step size requires the creation of a step size schedule. The schedule
is simply a method that tells the gradient descent algorithm what step size to use
at each iteration. A step size that follows a schedule requires a slight change in
notation for the update rule at each iteration:

x:+1 = x: � �:r 5 (G:).

Rather than have a single, constant value � for all iterations, the step size at
iteration : is �: . The value of �: is determined by the step size schedule.

There are many methods for constructing step size schedules, and the optimal
schedule depends heavily on the function 5 to be minimized. While there is no
universally best schedule, there are some properties of schedules that guarantee
convergence. Remember that gradient descent goes on forever, moving us ever
closer to a local minimum but never exactly there. We usually terminate gradient
descent after a finite number of iterations, but we could let it run forever using
infinitely many step sizes from the schedule. One method for ensuring convergence
constrains the sums of all the step sizes in the schedule. The two constraints are

1’
:=0

�: = 1 (12.2)

and
1’
:=0

�2
:
< 1. (12.3)
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Equation (12.2) forces our step sizes to be large enough so that gradient descent
does not stop prematurely before we are near the local minimum. The infinite sum
of all the step sizes in the schedule must diverge to infinity.

It’s easy to find a sequence of step sizes that sum to infinity — a constant step
size would satisfy equation (12.2). We also need the step sizes to decrease as each
iteration moves us closer to the local minimum. One method is to have the step
size approach zero, and equation (12.3) ensures the decrease is rapid enough for
convergence. Taken together, equations (12.2) and (12.3) define a “sweet spot” for
step sizes schedules. The step sizes must be large enough so their sum diverges,
but small enough so their squared sum converges. One step size schedule that
satisfies the convergence criteria is �: = 1/: (with �0 ⌘ 1 to avoid dividing by
zero). The first seven step sizes from this schedule are shown in the table below.

iteration 0 1 2 3 4 5 6
step size (�:) 1.000 1.000 0.500 0.333 0.250 0.200 0.167

The series �: = 1/: is the harmonic series, and the sum of this series diverges. The
sum of the squares of the harmonic series converges, although the exact value it
converges to is not important.

You might have noticed that if the sum of the step sizes is infinite but the sum of
the squared step sizes is finite, then �2

:
< �: , at least when : is large. This implies

that eventually �: < 1, and in practice it is rare to start with step sizes larger than
one.



Chapter 13

Logistic Regression

Let’s return to the problem of binary classification where a feature vector x is used
to predict the class H of a sample. We’ve already used the Support Vector Machine
to solve the binary classification problem. Recall that the SVM uses optimization
to find a hyperplane a · x = 1 that separates the two classes. Although the SVM
works well, it is difficult to understand how the algorithm predicts the class of new
data. We could try to examine the support vectors that lie nearest the separating
hyperplane, but in general we cannot directly interpret SVM models.

By contrast, we’ve seen how straightforward it is to interpret linear statistical
models. We are able to assign meaningful interpretations to the fitted coefficients,
and the relative importance of the predictor variables is quantified by the statistical
outputs of the fitlm function. Ideally we would use linear models for the binary
classification problem. However, there are two problems:

• The predictions of a classification algorithm are binary, while linear models
make continuous predictions.

• Even if we force a linear model to make discrete predictions, we must also
force the outputs of a linear model to stay within the set of classes.

In this chapter we develop a variant of linear regression called logistic regression.
Logistic regression uses a linear model to predict binary outcomes. Rather than
predict the class of a sample directly, a logistic regression model predicts the
probability that the sample is in each class. We will show how a link function can
be used to map the output of a linear model into a bounded range, like the interval
[0, 1] for probabilities.

111
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13.1 Predicting Odds

You’re probably familiar with probabilities as the long-run expectation of an un- Pun intended.
certain process. Logistic regression uses a related concept called the odds. You may
have used the term “odds” interchangeably with “probability,” but they are not
the same. Let’s assume that a random variable H has two possible outcomes, 0 and
1. The odds of H is the ratio of the probability that H equals 1 to the probability
that H equals 0, or

odds(H) =
%(H = 1)
%(H = 0) .

For example, if odds(H) = 2 then the probability that H = 1 is twice as large as
the probability that H = 0. We can convert between probabilities and odds by Odds are usually expressed as a proportion, so

an odds of 2 is written as 2:1, or “two to one”.remembering that probabilities sum to one, or P(y=0) + P(y=1) = 1. Then

odds(H) =
%(H = 1)
%(H = 0) =

%(H = 1)
1 � %(H = 1) ) %(H = 1) =

odds(H)
1 + odds(H) .

The odds function lives interval [0,1). The odds of H become infinite as the
probability that H = 1 increases. The odds of H go to zero as the probability that
H = 0 increases. This means that the logarithm of the odds, or the “log odds” Some people go further and refer to the log

odds as the “lods”.is a continuous value in the interval (�1,1), which is the same range as the
predictions of a linear model. We can build a binary classifier by using a linear
model to predict the log odds of the response variable H, i.e.

log(odds(H)) = �0 + �1G1 + · · · + �?G? .

The function log(odds(H)) is called the logit function. Because it links the response
variable to the linear models, we refer to the logistic (and other similar functions)
as link functions. To summarize:

H 2 0 or 1
%(H = 1) 2 [0, 1]
odds(H) 2 [0,1)

log(odds(H)) 2 (�1,1)

13.2 From Odds to Probabilities

Log odds can be predicted using linear models, but it is difficult for most people to
interpret the odds, much less their logarithm. Ideally we would have our logistic
regression model predict probabilities. The logistic regression model from above
was

log(odds(H)) = �0 + �1G1 + · · · + �?G? .

Exponentiating both sides to gives

odds(H) = 4
�0+�1G1+···+�? G? ⌘ 4

C
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where the placeholder C equals the output of the linear model. We can solve for the
probability that H equals 1 using the relationship between probabilities and odds.

%(H = 1) =
odds(H)

1 + odds(H)

=
4
C

1 + 4
C

=
1

1 + 4
�C

This function is called the logistic or sigmoid function, and its shape is shown in For the last step we divided both the numerator
and denominator by 4

C .Figure 13.1. The output of the function is restricted to the interval [0, 1] even though
the inputs are unbounded. The bounded output makes it possible to interpret the
outputs of the logistic function as probabilities.

Making predictions with logistic models is a two-step process. First, we use a
linear model to predict the placeholder value C. The value of C is used to calculate
the probability that the response is equal to one. If we were interested in classifying
the response, we would say that H = 1 if %(H = 1) > 0.5 and choose H = 0 otherwise.
Note that the point %(H = 1) = 0.5 occurs when C = 0. When classifying with a
logistic regression model, our response prediction switches from class 0 to class 1
when the output of the linear model C = �0 + �1G1 + · · · + �?G? switches from
negative to positive.

�5 0 5
0

0.5

1

C

%
(
H
=

1)

Figure 13.1: The logistic function.

Logistic regression is used for binary classification, so the model should alter-
nate between predicting class 0 and class 1. The sigmoid shape is a compromise; it
is smooth and continuous but still transitions rapidly from 0 to 1. The smoothness
of the logistic function (and its convenient derivative) makes it easier to fit logistic
regression models by gradient descent.

13.3 Example: Predicting the risk of Huntington’s Disease

Huntington’s Disease is an inherited genetic condition caused by repeated CAG se-
quences in the Huntingtin (HTT) gene. Too many CAG repeats create a “glutamine
knot" in the protein, causing toxic protein aggregates in neurons. Symptoms of
Huntington’s appear later life, and an individual’s risk for developing the disease
correlates with the number of CAG repeats. Source: Walker FO. Huntington’s disease. The

Lancet. 2007: 369, (9557), 218–228.
# of CAG Repeats Disease Outcome

< 28 Not affected.
28–35 Increases risk.
36–40 Affected; some offspring affected.
> 40 Affected; all offspring affected.
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Let’s build a model to predict the probability of developing Huntington’s based
on the number of CAG repeats. The response variable is binary (Huntington’s
disease or not) and the predictor variable is continuous (the number of CAG repeats
in the HTT gene). To train the model we counted the number of CAG repeats in 50
individuals with and without the disease.
M����� code

1 load huntington.mat
2 scatter(hunt.CAGs,categorical(hunt.disease))
3 xlabel(’CAG repeats’,axargs{:})
4 ylabel("Huntington ’s disease",axargs{:})

We see from these data that predicting disease status with low (<25) or high
(>35) CAG repeats is straightforward. However, there is a region between 25 and 35
CAG repeats where disease status is ambiguous. Let’s build a logistic regression
model to predict Huntington’s status. We use the M����� function fitglm, for
“fit generalized linear model”. The fitglm function is similar to fitglm; the first
argument is a table of data, and the second argument is a formula describing the
model. However, fitglm can use a wide range of link functions and datatypes
when fitting linear models. For logistic regression using binary responses we need
to specify the logit link function and a binomial distribution.

M����� code

1 model = fitglm(hunt,’disease ~ CAGs’,’link’,’logit’, ...
2 ’Distribution’,’binomial’)

M����� output

1 model =
2 Generalized linear regression model:
3 logit(disease) ~ 1 + CAGs
4 Distribution = Binomial
5
6 Estimated Coefficients:
7 Estimate SE tStat pValue
8 ________ _______ _______ ________
9 (Intercept) -14.032 5.7832 -2.4263 0.015252

10 CAGs. 0.50558 0.20395 2.4789 0.013179
11
12 50 observations , 48 error degrees of freedom
13 Dispersion: 1
14 Chi^2-statistic vs. constant model: 55, p-value = 1.18e-13

Remember that the model we’re fitting is

log(odds(disease)) = �0 + �1[CAGs].
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We know the best fit values of �0 and �1 from the output of the fitglmmodel:

log(odds(disease)) = �14.032 + 0.50558[CAGs].

We can also rewrite this model to predict the probability of having Huntington’s
disease

%(disease) = 1
1 + 4

�14.032+0.50558[CAGs] ,

which we plot below along with the training data.

M����� code

1 scatter(hunt.CAGs,hunt.disease)
2 hold on
3 cag_range = linspace(5,50,100);
4 beta = model.Coefficients.Estimate;
5 plot(cag_range , 1./(1+exp(-(beta(1)+beta(2)*cag_range))))
6 hold off
7 xlabel(’CAG repeats’,axargs{:});
8 ylabel(’$$P(\mathrm{disease})$$’,axargs{:});

We are often interested in the point where %(disease) = 0.5, as this is the
threshold number of CAG repeats where a person is equally likely to have or not
have Huntington’s. The logistic function reaches its midpoint when the linear
model moves from negative to positive. Thus we can simply solve for when

When the output of the linear model is zero,

%(H = 1) = 1
1 + 4

0 =
1
2

.

�0 + �1[CAGs] = 0.

�14.03 + 0.51[CAGs] = 0 ) [CAGs] = 14.03/0.51
⇡ 28 CAG repeats

13.4 Interpreting coefficients as odds ratios

The coefficients of the linear part of a logistic regression equation are not directly
interpretable. The coefficients describe how the linear model changes given a
unit change in the input variables, but the outputs of the linear model undergo
a nonlinear transformation before becoming a probability. Instead, we interpret
logistic regression models by calculating the change in odds that accompany a
unit change in an input variable. This change is odds is called the odds ratio. For
example, we can define the odds ratio that corresponds to increasing variable G8

by 1 as

odds ratio(G8) =
odds(G8 + 1)

odds(G8)
.
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Let’s calculate the odds ratio for Huntington’s disease that accompanies an
increase of one CAG repeat.

odds ratio([CAGs]) = odds([CAGs] + 1)
odds([CAGs])

=
4
�0+�1([CAGs]+1)

4
�0+�1[CAGs]

=
4
�0
4
�1[CAGs]

4
�1

4
�0
4
�1[CAGs]

= 4
�1

Since �1 = 0.51 in out model, having one more CAG repeat increases the odds
of developing Huntington’s disease by 4

0.51 = 1.67-fold. For any logistic regres-
sion model, the odds ratio for variable G8 is the exponential of the corresponding
coefficient �8 .

odds ratio(G8) =
odds(G8 + 1)

odds(G8)
= 4

�8

If �8 is negative the odds ratio 4
�
8 will be less

than one and the odds will decrease.You may have heard news reports that “doing - increases your risk of .".
Researchers performing this type of study often use logistic regression models
to predict the odds of developing condition . based on input variable -. The
reported increase in risk is simply the odds ratio associated with the coefficient of
-.

13.5 Fitting Logistic Regression Models

We fit a logistic regression model using a set of = training point (x8 , H8), where x8
is a vector of input features and H8 is a binary output variable (either 0 or 1). The
output of the logistic regression model is %(H8), the probability that H8 = 1 given
an input x8 . A perfect model would predict that

%(H8) = 1 when H8 is 1
%(H8) = 0 when H8 is 0

A common loss function for logistic regression is

!(#) =
1
=

=’
8=1

⇥
�H8 log%(H8) � (1 � H8) log(1 � %(H8))

⇤
(13.1)



117

where %(H8) is the output of the logistic function

%(H8) =
1

1 + 4
�C
, C = �0 + �1G1 + · · · + �?G? .

Let’s examine the summand of the loss function

�H8 log%(H8) � (1 � H8) log(1 � %(H8)).

When H8 = 0, this expression reduces to � log(1�%(H8)), which reaches a minimum
of zero only when %(H8) = 0. (When %(H8) < 0, 1 � %(H8) is less than one, so
� log(1 � %(H8)) is a positive, nonzero value). The other option is that H8 = 1, in Remember that %(H8) is a probability, so it must

lie in the range [0, 1]. Also, the logarithm of 1
is 0, the logarithm of a number smaller than 1
is negative; and the logarithm of 0 approaches
negative infinity.

which case the loss summand becomes � log%(H8). This expression is minimized
when %(H8) = 1. Both cases are what we want in a loss function — to minimize the
loss we set %(H8) = 0 when H8 = 0 and %(H8) = 1 when H8 = 1.

The loss function in equation (13.1) isn’t the only loss function that would work
for logistic regression. The function %(H8)

1�H8 (1 � %(H8))
H8 is also minimized when

the probability %(H8) matches the value of H8 . However, this loss function also has a
maximum value of one for each training point. We prefer that our loss functions be
unbounded above so that no matter how terrible our model is, making it worse will
always increase the loss. Said another way, we always want to distinguish between
“bad” solutions and “very bad” solutions; otherwise, if we started training at a
very bad solution, there would be little change in the loss by improving to a merely
bad solution. Since the derivative of the loss function drives our training updates,
any plateau in our loss function will decrease the training rate.

The loss function in equation (13.1) did not appear out of thin air. Minimizing
(13.1) is equivalent to maximizing the likelihood of the model predicting the train-
ing values. Actually, it maximizes the log-likelihood since taking the logarithm of
the likelihood doesn’t change the argmax but makes the function easier to compute.

13.5.1 Gradient Descent
Our loss function is nonlinear and must be minimized using gradient descent or
another iterative approach. We first need to compute the gradient of the loss with
respect to each parameter in #.

g(#) =
©≠≠≠
´

%!
%�0
.
.
.

%!
%�?

™ÆÆÆ
¨

The loss function ! depends on the probabilities %, which depend on the output C
of the linear model, which depends on the parameters #. This nested structure is
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a perfect opportunity to use the chain rule to compute the entries of the gradient.
For a single parameter � 9

%!
%� 9

=
1
=

=’
8=1

%!8

%%8

%%8

%C8

%C8
%� 9

.

Let’s compute each of the righthand side derivative in turn. For the loss function,
it is simpler to compute the derivative separately when H8 = 0 and H8 = 1.

%!8

%%8

=
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1

1�%(H8 ) , when H8 = 0
�

1
%(H8 )

, when H8 = 1

The probability % is the output of the logistic function, which has a convenient
derivative.

%%8

%C8
= %(C8)(1 � %(C8))

=
1

1 + 4
�C8

1
1 + 4
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Finally, we compute the derivative of the linear model C = �0 + �1G1 + · · · + �?G? ,
being careful to handle the special case of the intercept (8 = 0).

%C8
%� 9

=

(
1, when 9 = 0
G89 , when 9 > 0

The notation G89 requires an explanation. Remember that we have = pairs of training
data (x8 , H8). The value G89 is the 9th entry in the 8th feature vector of the training
set.

With the derivative in hand, all we need to begin gradient descent is an initial
guess for the parameter vector #. A convenient guess is # = 0. Setting all param-
eters equal to zero makes the output of the linear model C = 0 for every training
point. The logistic function takes the value 0.5 when C = 0, so a zero initial guess
begins right in the middle with a prediction that H8 is equally likely to be 0 or 1 for
every training point. Unless we have some prior information that says otherwise,
guessing 0 or 1 with equal probability is a fine place to start.

An accompanying M����� workbook implements gradient descent to fit the
Huntington’s model from earlier in this chapter.



Chapter 14

Bias, Variance, and Regularization

14.1 Learning vs. Memorizing

Just because we trained a model does not mean it learned anything useful from
the data. We need to test the model to assess its accuracy. We test a model
using data that were not used for training so we can distinguish between learning

and memorizing. Memorizing occurs when a model simply remembers the correct
outputs for each of the training inputs. When shown a training input again, the
model can produce the correct result. However, if the model is given an input that
was not included in the training set (i.e. an input that it has not memorized), the
model cannot predict the correct value. By contrast, learning occurs when a model
can predict correctly without memorizing. Models learn by finding relationships
in the input features that hold information about the correct output. A model
that learns well can usually make good predictions on new data since the feature
relationships are still valid. Models that predict accurately on data that were not
part of the training data are said to generalize.

Models that cannot generalize well are not useful. Such models have only mem-
orize the correct answers for the training data, but we already know the answers
to the training data! Testing our models with our training data cannot distinguish
between models that memorize and models that learn. We need separate data that
have not been shown to the model. Models that memorize will perform poorly on
these data, but models that learned will do better.

All models more accurately predict the results of their training data compared
to the testing data, so do not be alarmed if the testing accuracy is lower than
the training accuracy. The reduced performance on testing data is called the
generalization gap, and it affects all models even if they are not memorizing. In this
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chapter we will discuss why the generalization gap occurs and how to reduce it.
We will also discuss methods to assess both the training and testing accuracy of
our models.

14.2 Holdout

The simplest approach for validating a model is called holdout. Holdout removes
a minority of the training data and sets it aside for testing. The holdout set can be
used for validation since it was not used during training.

There are no rules for how much of the training data should be removed for
holdout. The number of holdout observations, not the fraction of the entire dataset,
is most important. For example, imagine if we only included two points in our
holdout set when training a binary classifier (like logistic regression). There are
only three possible outcomes when testing our model: 0/2, 1/2, or 2/2, making our
accuracy 0, 0.5, or 1.0. This is clearly a crude assessment of our model’s accuracy. If It is common in machine learning to refer to

accuracy as a fractional value, not as a percent-
age.

the holdout dataset includes = observations, the resolution of our accuracy estimate
is 1/=. A holdout set with 10 observations can only estimate the accuracy to within
0.1, and this is an upper bound. Small holdout sets are hampered by stochasticity.
Testing points that happen to be similar to a training data are easier for a model to
predict correctly. A few “good” or “bad” points can have a big effect if the holdout
set is small.

Perhaps counterintuitively, larger training sets require a smaller fraction of data
be reserved for holdout. A training set with 20 observations could require 50%
or more the data be set aside for holdout, and even then the validation accuracy
would have a precision of no less than 0.1. By contrast, the Netflix Prize contest,
a community-based competition to predict personalized ratings for movies, used
a training dataset with over 100 million observations. The final validation set
included only 1.36% of these points to award a $1,000,000 prize to the winning
team. Although the Netflix Prize holdout set con-

tained over one million observations, the top
two teams tied for accuracy. The tiebreaker
went to the team that submitted 20 minutes
before the other.

Holdout works well for large datasets where only a small fraction of the data
need to be excluded from training. In small datasets a large fraction of data need
to be removed for validation. After validation, the holdout data can be added
back to the training set before training a final model. Thus the holdout data are
not “lost”, but for small datasets with large holdout the validation accuracy will be
a poor estimate of the accuracy of the final model trained with the entire dataset.
For large datasets, the expense of retraining the model often outweighs the gain in
accuracy from including the small fraction of holdout points.
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14.3 Cross Validation

Cross validation is an alternative to holdout. In cross validation, all points in
the dataset are used for training and testing, but never at the same time. Cross
validation begins by splitting the dataset into a set of : groups of roughly equal
size. Each group of data is called a fold, and points are randomly assigned to the
folds. For example, at dataset with 16 points could be divided into : = 4 folds.

|         {z         }
fold 1

|         {z         }
fold 2

|         {z         }
fold 3

|         {z         }
fold 4

To begin cross validation, one of the folds is set aside for validation, similar to
holdout. A model is trained using the remaining : � 1 folds and tested against the
holdout fold.

|         {z         }
fold 1 (test)

|         {z         }
fold 2 (train)

|         {z         }
fold 3 (train)

|         {z         }
fold 4 (train)

Next we put fold 1 back into the training set and set aside fold 2 for testing.
Then we re-train our model using folds 1, 3, and 4 and validate with fold 2.

|         {z         }
fold 1 (train)

|         {z         }
fold 2 (test)

|         {z         }
fold 3 (train)

|         {z         }
fold 4 (train)

This process continues : = 4 times, with the final model trained on folds 1–3
and validated with the data in fold 4. The final step is to average the accuracies
across all : folds. This average is reported as the final accuracy, and a full model
can be trained using all of the data.

The advantage of :-fold cross validation is that every point in the dataset is used
for testing, so the method is not sensitive to which data are selected for holdout.
However, the method is still stochastic as the accuracy of each model depends on
how the data are randomly assigned to the folds. A :-fold cross validation requires
training : separate models in addition to the final model with all of the data. This
might be costly for very large datasets, so cross validation is more common in
small- to medium-sized problems.

14.3.1 Leave-one-out Cross Validation
There is no rule for determining the number of folds (:) for a cross validation.
Smaller datasets benefit from higher values of : since fewer points are held out
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at a time and training multiple models is not computationally prohibitive. One
extreme of :-fold cross validation occurs when : equals the number of points in the
dataset. In this case each fold contains only a single point, hence the name leave-

one-out cross validation. Leave-one-out is the most computationally demanding Leave-one-out is abbreviated “L1O”. Assign-
ing two points per fold is called leave-two-out
(L2O) cross validation.

strategy for cross validation, as a new model must be trained for each point in
the dataset. However, leave-one-out provides the best estimate of the accuracy
of the final model trained with all the data. Each of the validation sub-models is
trained with all but one point, so these models closely resemble the performance of
a model trained with all of the data. Since each fold contains one point, there is no
randomness to the validation procedure if the training algorithm is deterministic.

14.4 Bias vs. Variance

Cross validation measures the accuracy of our models. We need to understand
why our models are inaccurate before we can develop strategies to improve them.
As a reminder, we care most about generalization accuracy — the ability to predict
results that were not included in the training set. The fundamental source of all
model inaccuracies is limited data. Take, for example, the data in Figure 14.1. The
center panel shows a continuous function that we are trying to learn using six data
points. The other eight panels show six randomly sampled points from the center
function. It would be difficult to estimate the original function using any of these
subsets alone. Any model fit to a subset of data would not generalize well to parts
of the function that were not we represented in the training data.

Most datasets contain more than six training points, but remember that the
function in Figure 14.1 is one-dimensional. Many of our machine learning methods
are applied to high-dimensional data, so the density of training data may be lower
than the sampling shown in the Figure 14.1. Data acquisition is enormously
expensive, so we are often left with far less training data than we would like.

A model’s error can be divided into two sources. The first source is bias. Bias
appears when the model underfits the data because the model lacks the flexibility
to match the underlying system. Imagine fitting a model that predicts how many
text messages a person sends per day based on their age. Even if we had millions of
training data, we could not possibly predict everyone’s texting patterns using such
a simple model. A teenager with a phone might text a lot, but not all teenagers
have phones. Our model’s predictions will have high bias since adding more data
or switching to a new sample will not improve the predictions. Bias is robust to
subsampling, meaning we will fit similar models to different datasets.

You can see high-bias models in the first column of Figure 14.2. Each model
is a two-parameter linear model (H = �0 + �1G) fit to six points sampled from the
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Figure 14.1: Samples of six points vary in their approximations of the function in the center panel.

true function. Although the six-point samples vary widely, the fit models and their
generalization error are similar. Although the models are not sensitive to changes
in the dataset, they do not approximate the function well. After all, we cannot
expect a purely linear model to reproduce the nonlinear function shown at the top
of the figure.

The other source of generalization error is model variance. Models with high
variance are overfit to the data. High variance can been seen in right column of
Figure 14.2. These are six-parameter curvilinear models (H = �0 + �1G + �2G

2 +

· · · + �5G
5). Notice how well these models predict the training data (blue circles).

In fact, since there are six parameters and six data points, these models predict the
training data exactly! However, you should also notice how poorly some of these
models would generalize. The top model predicts a huge spike between 0.5 and
1, and the middle model predicts an increase, not decrease, near 1.0. Neither of
these model match the true function at the top of the figure. Models with high
variance have two characteristics: 1.) they are good at memorizing training data,
and 2.) they are highly sensitive to the training data. The two-parameter models
on the left are similar for all three datasets, but the six-parameter models have very
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Figure 14.2: A model’s bias and variance depend on the number of parameters.
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different shapes.
The key to fitting models is to balance bias and variance. We want models that

are flexible enough to match the true system (low bias) but not overly sensitive to the
specifics of our training data (low variance). A three-parameter quadratic model
(H = �0 + �1G + �2G

2) achieves this balance for the function in Figure 14.2 (center
column). The models are not exact, but each model resembles the true function
regardless of which points are included in the training set. This example shows
overly simple and overly complex models can both lead to poor generalization.

14.5 Regularization

Figure 14.2 is a toy example. We knew the true function and were able to collect
multiple subsamples to test our model’s accuracy. This allowed us to adjust the
number of parameters until we found a model that balanced bias and variance. In
reality, we won’t be able to tune and retrain our model, partly because we don’t
know the true function we are trying to replicate.

A more general strategy is to start with a model that has more parameters than
necessary and try to minimize overfitting. This approach is called regularization,
and it relies on an observation that overfit models tend to have many parameters
with large magnitudes. Keeping parameters small during training tends to pro-
duce models that generalize better. We regularize an algorithm by penalizing it
whenever the model’s parameters get too big. Formally, this is accomplished by
adding a regularization term to the objective function.

14.5.1 The LASSO
Let’s use regularization to prevent overfitting of a linear model. Linear models are
trained using a quadratic loss function

min
#

=’
8=1

⇣
H

pred
8

� H
true
8

⌘2
.

Here # is a vector of parameters. If the linear model has input features x, the output
H

pred = x · #. We can substitute this model into our loss function to make it clear
that we are minimizing the loss by selecting a set of parameters #.

min
#

=’
8=1

�
x · # � H

true
8

�2
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Now we can add regularization. Remember that the goal of regularization is to
keep the parameters in # from becoming too large and overfitting the model. We
can add a term to our objective function so our algorithms tries to minimize both
the total loss and the magnitudes of the parameters.

min
#

=’
8=1

�
x · # � H

true
8

�2
+ ⌫

?’
8=1

|�8 | (14.1)

The regularization term adds up the magnitudes of the parameters. This sum is
weighted by a hyperparameter ⌫ that balances the two objectives: minimize loss
or minimize the parameter magnitudes. The hyperparamter ⌫ can be any non-
negative value. Setting ⌫ = 0 eliminates all regularization, making Equation (14.1)
equivalent to normal least-squares regression. Setting ⌫ to a large value will focus
most of the algorithm’s attention on keeping the parameters small. If ⌫ is large
enough, the algorithm will ignore the loss entirely and set all of the parameters to
zero. There is no definite rule for selecting a value for ⌫. Like all hyperparameters,
it must be tuned for each problem to maximize performance. Cross validation can
be used to ensure the value of ⌫ promotes generalization of the trained model.

The regularized form of linear regression in Equation (14.1) is called the “least
absolute shrinkage and selection operator”, or LASSO. The effects of regularization
can be seen in Figure 14.3. When ⌫ = 0, the LASSO is equivalent to standard
linear regression, so a six-parameter model overfits random samples of six data
points. Adding regularization (⌫ = 0.001) decreases the variance of the models,
as seen by the similar shapes of the models in the center column. Increasing the
regularization (⌫ = 0.01) further reduces the variance, and all the models in the
right column have the same overall shape. However, we are starting to see the
effects of over-regularizing the model. Regularization penalizes large parameters,
so the models are beginning to underpredict the data. Said another way, high
regularization reduces the variance so much that we begin to see increased model
bias.

The goal of regularization is to improve generalization, but this goal causes
decreased accuracy on the training data. The first column of Figure 14.3 fits the
training data exactly, but the curves are clearly overfit and do not resemble the
true function. The regularized models in columns two and three do not predict
the training exactly, although they will generalize better since they more reliably
predict data outside the training set. Do not be alarmed if adding regularization
decreases the training accuracy of your model. You are reducing your model’s
ability to memorize in hopes that it will generalize better.

The example in Figure 14.3 uses regularization to keep a polynomial model
from overfitting data. This is only one application of the LASSO. As discussed in
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Figure 14.3: Increasing values of ⌫ decrease the variance of linear models trained by the LASSO.

section 14.5.2, the absolute value in the LASSO leads to solutions where many of
the parameters are set to zero. This selection property is useful when we have far too
many input features for our model. For example, many genome-wide association
studies use logistic regression to compute the risk of a disease given mutations
(SNPs) in a genome. Every humans has thousands of SNPs, so any regression
model trained with all SNPs would be vastly overfit. A properly regularized
logistic regression model will only assign nonzero effect sizes to a small number
of informative SNPs, essentially selecting the best SNPs for predicting the risk of
the disease. Regularization not only improves generalization; it also helps refine
datasets by selecting interesting features.

14.5.2 Generalized Regularization
The LASSO combines regularization and linear regression, but regularization can
be applied to any machine learning technique. In general, machine learning algo-
rithms find parameter values that minimize a loss function, so they can be cast as
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optimization problems of the form

min
#

=’
8=1

!(#)

where # is a vector of parameters and ! is a loss function that depends on the
parameters. Just as we did with the LASSO, we can add a regularization term to
the objective function to give the regularized problem

min
#

=’
8=1

!(#) + ⌫
��#��

:
.

The hyperparameter⌫ determines how badly we penalize the parameters based on
the sum of their :-norms. The LASSO used the 1-norm (the absolute value) of each
parameter, but we can use any norm to measure the size of each parameter. Each
norm has a different effect on the regularization, as we explain in the following
sections.

0-norm Regularization

The 0-norm measures the number of nonzero parameters. The 0-norm of any
nonzero value is equal to 1, or

�����0 =

(
0, � = 0
1, � < 0

.

The 0-norm is not a true norm since it violates some of the defining properties of
norms. However, it is useful for “counting” nonzero values. Regularizing with
the 0-norm penalizes the number of nonzero parameters, not their magnitudes.
A 0-norm regularized model will minimize the loss function using the smallest
number of parameters. This regularization strategy mimics what we accomplished
in Figure 14.2 by changing the number of parameters in our curvilinear models.
Changing the model from six to two parameters simplified the model but did not
place any constraints on the values of the parameters.

The 0-norm would be excellent for regularization except for one problem —
it is computationally intractable. Problems that include a 0-norm are essentially
discrete problems where parameters are either “on” or “off”. Such problems are
combinatorially complex and their difficulty increases exponentially with the num-
ber of parameters. Large-scale machine learning problems would be impossible
to solve if they included 0-norm regularization. Fortunately, the 1-norm approxi-
mates many of the features of the 0-norm in a computationally efficient way.
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1-norm Regularization

As its name implies, the LASSO performs “shrinkage and selection” on the param-
eters of a linear model. Shrinkage penalizes parameters based on their magnitude,
while selection encourages the model to have nonzero values for only a subset of
the parameters. Selection is akin to 0-norm regularization, but the LASSO used
only the 1-norm, or absolute value, when penalizing the parameters. It turns out
that 1-norm regularization performs both operations. Minimizing the absolute
value of parameters forces many of the parameters to zero. While there is no
guarantee that minimizing the 1-norm will achieve the least number of nonzero
parameters (as the 0-norm would), the 1-norm provides a decent approximation
of the 0-norm. At the same time, the 1-norm also penalizes parameters based on
their magnitudes, all while remaining computationally tractable!

The combination of shrinkage, selection, and efficiency make the 1-norm a pop-
ular choice for regularization. It is ideal for generating sparse solution, i.e. models
with relatively few nonzero parameters. Despite its strengths, the 1-norm has two
disadvantages. First, the derivative of the absolute value is discontinuous at zero,
so 1-norm regularized problems can be difficult to solve by gradient descent. Alter-
native methods like coordinate descent or stochastic gradient descent (Chapter ??)
can be used instead. Second, the solutions to 1-norm regularized problems are not
unique. Many different parameter sets can have the same 1-norm penalty.

2-norm Regularization

The 2-norm, like the 1-norm, penalizes based on the magnitude of the model’s
parameters; however, this is where the similarities end. The 2-norm penalty in- Regularization with the 2-norm is also called

least-squares or Tikhonov regularization.creases quadratically with the size of a parameter, so 2-norm regularization tries
very hard to avoid any large parameters. Instead, the 2-norm encourages solutions
with many nonzero parameters with small magnitudes. This is the opposite of the
sparse solutions produced by 1-norm regularization. Problems with the 2-norm
have unique solutions and continuous derivatives (provided the loss function is
continuously differentiable). Both of these features are attractive for large-scale
optimization.

The Elastic Net: 1-norm + 2-norm Regularization

Some algorithms try to combine the desirable features of both 1-norm and 2-norm
regularization. Both regularization terms are added to the objective function.

min
#

=’
8=1

!(#) + ⌫1
��#��1 + ⌫2

��#��2
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Each type of regularization is weighted by separate hyperparameter: ⌫1 for the
1-norm and ⌫2 for the 2-norm. The relative size of these hyperparameters deter-
mines the importance of each type of regularization. Setting ⌫1 = 0 is equivalent
to 2-norm regularization, and setting ⌫2 = 0 performs 1-norm regularization.
Combining both 1-norm and 2-norm regularization is sometimes called Elastic Net

regularization.



Chapter 15

Geometry

15.1 Geometry of Linear Equations

Why do linear systems have convex solution spaces? Before answering, we should
understand the shape of individual equations (rows) in the systems Ax = b. The
equation corresponding to the 8

th row is

A(8 , :) · x = 18

which we will simplify by using the notation

a · x = 1

where a and x are vectors and the value 1 is a scalar. In two dimensions this
expression defines a line

01G1 + 02G2 = 1.

The above representation of a line is the standard form, which differs from the slope-

intercept form you remember from algebra (H = <G + 1). It seems intuitive why
the slope-intercept form is a line; a change in G produces a corresponding change
<�G in H, with an intercept 1 when G = 0. What is the analogous reasoning for
why a · x = 1 is a line?

First, we note that the vector a always point perpendicular, or normal to the line.

For the horizontal line H = 3, the vector a =
✓
0
1

◆
points vertically. For the vertical

line G = 3, the vector a =
✓
1
0

◆
point horizontal. For the line G1 + G2 = 1, a =

✓
1
1

◆
,

which is still perpendicular to the original line.

✓
0
1

◆ G2 = 3

✓
1
0

◆
G1 = 3

✓
1
1

◆ G1 + G2 = 5

Figure 15.1: The vector a is always normal (per-
pendicular) to the line a · x = 1.
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To help visualize the equation a · x = 1, we need to know the length of a. The
easiest solution is to normalize a by dividing both sizes of the equation by the norm
of a.

1
kak

a · x = 1/kak .

If we use our previous notation of â for the normalized form of a and define scalar
3 = 1/kak, we have

â · x = 3.

The equation â · x = 3 is called the Hesse normal form of a line, plane, or hyperplane.
We know that â is a unit vector normal to the line. What is the meaning of 3? Let’s
compute the dot product â · x using an arbitrary point x on the line.

3 = â · x = kâk kxk cos = kxk cos.

Thus, 3 is the projection of the magnitude of x onto the normal vector. For any
point on the line, this projection is always the same length – the distance between
the origin and the nearest point on the line. Conversely, a line is the set of all vectors
whose projection against a vector â is a constant distance (3) from the origin.



â

â · x = 3

3

x

Figure 15.2: A line is the set of all points x
whose projection onto â is the distance 3.

The same interpretation follows in higher dimensions. In 3D, the expression
â · x = 3 defines a plane with normal vector â at a distance 3 from the origin.
This definition fits with the algebraic definition of a plane that you may have seen
previously: 01G1 + 02G2 + 03G3 = 3. In higher dimensions (four or more), this
construct is called a hyperplane.

Remember that when analyzing an expression of the form â ·x = 3, the constant
on the right hand side (3) is only equal to the distance between the line and the
origin if the vector â is normalized. For example, the line

3G1 + 4G2 = 7

has coefficient vector a =
✓
3
4

◆
, which is not normalized. To normalize a, we divide

both sides by kak =
p

32 + 42 = 5, yielding
3
5 G1 +

4
5 G2 =

7
5 .

Now we can say that the distance between this line and the origin is 7/5.

15.2 Geometry of Linear Systems

no solutions
(parallel)

one solution
(intersecting)

infinite solutions
(colinear)

Figure 15.3: A system of linear equations can
have zero, one, or infinitely many points of
intersection.

The equation â · x = 3 defines a hyperplane. It is also a single row in the linear
system Ax = b. What does the entire system of equations look like? First, let’s
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consider a set of three equations in two dimensions (so we can visualize them as
lines). Solutions to Ax = b are points of intersection of all three equations. If the
lines are parallel, no solutions exist. If the lines all intersect at one point, there is
a unique solution. If the lines are colinear (all fall upon the same line), infinitely
many solutions exist. Note that these are the only options – zero, one, or infinitely
many solutions, just as predicted by the grand solvability theorem. It is impossible
to draw three straight lines that intersect in only two places.

If linear systems Ax = b are a set of intersecting lines in 2D, what is do the
inequalities Ax  b represent? Each inequality states that the projection of x onto
the normal vector a must be less than 3. These points form a half-plane – all the
points on one side of a hyperplane. The system Ax  b has a solution space that is
the overlap of multiple half-planes (one for each row in A). As we proved earlier,
this solution set is a convex set.

A

â · x  3

B

Figure 15.4: A. One inequality defines a half-
plane. B. Multiple half-planes intersect to form
a convex solution set for the system Ax  b.



Chapter 16

Support Vector Machines

In this chapter we focus on classification, the problem of using features to predict
which class an observation belongs to. We are particularly interested in distin-
guishing among two classes, a problem known as binary classification. We will
introduce the Support Vector Machine, or SVM, a framework for solving classifi-
cation problems using optimization and linear algebra. “Machine” refers to an algorithm. We’ll ex-

plain what a support vector is later in the chap-
ter.

As an example, consider the following dataset that reports the blood pressure
and cholesterol levels of 20 patients. Twelve of the patients have not experienced a
heart attack, but the remaining eight have. Let’s load and plot the data.

M����� code

1 load HeartAttack.mat
2 hatk

BloodPressure Cholesterol HeartAttack
1 133 160 ’no’
2 152 166 ’no’
3 128 168 ’no’
4 89 169 ’no’
5 86 170 ’no’
6 86 175 ’no’
7 111 177 ’no’
8 145 179 ’no’
9 108 185 ’no’
10 118 193 ’no’

M����� code
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1 gscatter(hatk.BloodPressure ,hatk.Cholesterol , ...
2 hatk.HeartAttack ,’kr’);
3 hold on
4 xlabel(’mean arterial pressure [mmHg]’);
5 ylabel(’cholesterol [mg/dl]’);
6 title(’Heart Attack Status’)
7 hold off

It’s clear that we can separate the patients who experienced a heart attack from
the ones who did not. However, the separation requires knowledge of both blood
pressure and cholesterol levels. There is no cholesterol level alone that separates
the two classes, and the same is true for blood pressure. We want to identify a
hyperplane that separates the classes so we can predict the heart attack risk for
other patients.

For small datasets like this, it is possible to simply draw a line that separates
the classes. For problems with only two features, classification is often trivial.
However, classifying with thousands of features cannot be done ad hoc. Fortu-
nately, everything we will learn in lower dimensions generalizes easily to higher
dimensions.
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16.1 Separating Hyperplanes

First we code the points by setting one group equal to +1 and the other group to
�1. For our heart attack data, patients who experienced a heart attack are +1 and The term code in this context is unrelated to

computer programming.the rest are �1.

M����� code

1 hatk.HeartAttack = [-1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
2 1 1 1 1 1 1 1 1]’

BloodPressure Cholesterol HeartAttack
1 133 160 -1
2 152 166 -1
3 128 168 -1
4 89 169 -1
5 86 170 -1
6 86 175 -1
7 111 177 -1
8 145 179 -1
9 108 185 -1
10 118 193 -1

The +1 and �1 designations are arbitrary — it doesn’t matter which group is
which. Switching the +1 and �1 codings will give the same classifer. The resulting
hyperplane will have the normal vector pointing the opposite way, but this does
not affect performance of the classifier.

Our goal is to find a hyperplane that separates the +1 and �1 points. Recall
that any hyperplane can be represented in the Hesse form as This is the Hesse form, not the Hesse normal

form since a has not been normalized.
a · x = 1

where a is a vector of coefficients and 1 is a scalar. Normally our goal is to find
values for the vector x. For classification problems we know that values of x (the
features) for each point. Our goal is to find the coefficients a and the scalar 1 that
define the separating hyperplane.

We want to choose a and 1 such that all of the +1 points are on one side of the
hyperplane and all of the �1 points lie on the other size. By convention, we will
put the +1 points above the plane, which we enforce with the constraint

a · x � 1
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for any values x that are coded +1. Similarly, we require the �1 points be below
the hyperplane with the constraint

a · x  1

for any values x that are coded �1. Note that there are usually infinitely many
hyperplanes that can separate the+1 and�1 points. We want to find the hyperplane
that maximizes the gap, or margin, between the +1 and �1 points. The hyperplane
that maximizes this gap is called the maximal margin hyperplane.

To find the maximal margin hyperplane, we start with two parallel hyperplanes.
We require all the +1 points be above the top plane and all �1 points be below the
bottom plane. We push the two planes apart until the top plane hits the nearest
+1 point and the bottom plane hits the nearest �1 point. When the gap between
the two planes is maximized, we know that the maximal margin hyperplane will
sit halfway in between the two planes.

Let’s formalize this procedure. We define the top plane to be a · x = 1 + 1 and
the bottom plane to be a ·x = 1�1. Since both planes have the same normal vector a
we know they are parallel. The ±1 terms are arbitrary since we aren’t requiring the
vector a to be a unit vector. How far apart are these planes? Let’s convert the planes
to the Hess normal form. Then the top plane is at a distance of (1 + 1)/kak from
the origin and the bottom plane is at distance (1 � 1)/kak. The distance between
the planes is therefore

1 + 1
kak

�
1 � 1
kak

=
2
kak

The gap between the planes is inversely proportional to the magnitude of a.
Maximizing the separation between the planes is equivalent to minimizing the
magnitude of a. All together, the maximal margin hyperplane is the solution to
the following constrained optimization problem:

minimize
a,1

kak

subject to a · x � 1 + 1 for the +1 points
a · x  1 � 1 for the �1 points

This might seem like a difficult optimization, but there is an important simplifica-
tion. Remember the definition of the magnitude

kak =
q
0

2
1 + 0

2
2 + · · · + 0

2
=

The square root function is monotonically increasing, meaning it always increases as
its argument increases. Because of monotonicity, minimizing the square root of an Functions like cos(G) are not monotonic as they

both increase and decrease as G increases.
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input is equivalent to minimizing the input itself. Rather than minimize kak we
can simply minimize the expression 0

2
1 + 0

2
2 + · · · + 0

2
=
. The classification problem

becomes
minimize

a,1
0

2
1 + 0

2
2 + · · · + 0

2
=

subject to a · x � 1 + 1 for the +1 points
a · x  1 � 1 for the �1 points

Since the objective is purely quadratic with positive coefficients, we know it is
convex. We also know that the constraints are linear and therefore also convex. We
are minimizing a convex function over a convex set, which is easily solved.

16.2 Setting up the SVM Quadratic Program

The SVM problem outlined above is a quadratic program (QP), a term in optimiza-
tion that means a problem with a quadratic objective function and a set of linear
constraints. Let’s set up a QP for four observations from our heart attack data:

Blood Pressure Cholesterol HeartAttack
133 160 �1
89 169 �1

164 224 +1
153 242 +1

1. Define the dimensions of the problem. We have two predictor variables:
blood pressure and cholesterol level. Let’s set G1 = blood pressure and G2 =
cholesterol. We then know that a has two dimensions (01 and 02).

2. Write out the objective function. The objective is to minimize the magnitude
of a, or

minimize
01 ,02 ,1

0
2
1 + 0

2
2

3. Write out constraints for each point by substituting values for x. We have
four points so we will have four constraints. The constraints for the �1 points
are

13301 + 16002  1 � 1
8901 + 16902  1 � 1
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For the +1 points we have

16401 + 22402 � 1 + 1
15301 + 24202 � 1 + 1

All together, the quadratic program for finding the SVM classifier for these data is

minimize
01 ,02 ,1

0
2
1 + 0

2
2

subject to 13301 + 16002  1 � 1
8901 + 16902  1 � 1

16401 + 22402 � 1 + 1
15301 + 24202 � 1 + 1

16.3 SVM in M�����

Setting up an SVM problem by hand is informative but unwieldy for large datasets.
There are several software libraries for efficiently formulating and solving SVM
problems. We will use the fitcsvm function to fit an SVM classifier. The function The name fitcsvm stands for “fit classifier

SVM".takes two arguments: a matrix of features and a vector with class codings. Let’s
begin by putting our two features into a matrix.

M����� code

1 features = [hatk.BloodPressure hatk.Cholesterol]

M����� output

1 features = 20x2
2 133 160
3 152 166
4 128 168
5 89 169
6 86 170
7 86 175
8 111 177
9 145 179

10 108 185
11 118 193

Now we call fitcsvm and store the output in a variable that we’ll call model.

M����� code

1 model = fitcsvm(features, hatk.HeartAttack)
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M����� output

1 model =
2 ClassificationSVM
3 ResponseName: ’Y’
4 CategoricalPredictors: []
5 ClassNames: [-1 1]
6 ScoreTransform: ’none’
7 NumObservations: 20
8 Alpha: [3x1 double]
9 Bias: -16.4864

10 KernelParameters: [1x1 struct]
11 BoxConstraints: [20x1 double]
12 ConvergenceInfo: [1x1 struct]
13 IsSupportVector: [20x1 logical]
14 Solver: ’SMO’

The model object contains lots of information. Some important pieces are the
values for a (model.Beta) and value of the scalar 1 (model.Bias)

M����� code

1 model.Beta

M����� output

1 ans = 2x1
2 0.0465
3 0.0488

M����� code

1 model.Bias

M����� output

1 ans = -16.4864

We can use these values to plot the maximal margin hyperplane.

M����� code

1 bp = hatk.BloodPressure; ch = hatk.Cholesterol;
2 gscatter(bp,ch,hatk.HeartAttack ,’kr’);
3 hold on
4 xlabel(’mean arterial pressure [mmHg]’);
5 ylabel(’cholesterol [mg/dl]’);
6 plot(bp(model.IsSupportVector), ...
7 ch(model.IsSupportVector), ...
8 ’ko’, ’MarkerSize’,10);
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9 plot(bp, ...
10 -model.Beta(1)/model.Beta(2)*bp ...
11 - (model.Bias)/model.Beta(2))
12 legend(’normal’,’disease’,’Support Vector’,’Classifier’);
13 hold off

We’ve also identified the support vectors on the above plot. Remember that to
find the maximal margin hyperplane we push two parallel planes outward until
they hit the nearest +1 and �1 points. These nearest points are called the support
vectors since they “support" the planes. Support vectors are what determine the
location of the maximal margin hyperplane; their importance gives rise to the name
Support Vector Machine.

So far we’ve trained an SVM model. We can also make predictions about new
patients using the model object and the Matlab function predict. The predict
function accepts a model object and a matrix of features for the unknown observa-
tions. It returns predictions (+1 or�1) for each observation. Let’s make predictions
for two new patients with the following data:

Blood Pressure Cholesterol
153 230
99 132
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M����� code
1 predict(model, [153 230; 99 132])

M����� output

1 ans = 2x1
2 1
3 -1

Our model predicts the first patient would have a history of heart attack while
the second patient would not.

16.4 :-fold Cross Validation in Matlab

Performing a :-fold cross validation requires 1.) randomizing the folds, 2.) retrain-
ing the model, and 3.) classifying each fold. Fortunately, there is a Matlab function
to perform :-fold cross validation. We can perform a 5-fold cross validation on our
heart attack SVM model as follows
M����� code

1 xval = crossval(model,’Kfold’,5)

M����� output

1 xval =
2 classreg.learning.partition.ClassificationPartitionedModel
3 CrossValidatedModel: ’SVM’
4 PredictorNames: {’x1’ ’x2’}
5 ResponseName: ’Y’
6 NumObservations: 20
7 KFold: 5
8 Partition: [1x1 cvpartition]
9 ClassNames: [-1 1]

10 ScoreTransform: ’none’

The object returned by crossval contains information about how the folds
were created and tested. The accuracy of the classifier is measured by the loss, with
lower loss meaning a better model. We can find the loss by calling the kfoldLoss
function on our crossval return object. Note the capital “L" in kfoldLoss.

M����� code
1 kfoldLoss(xval)

M����� output

1 ans = 0
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16.5 Soft Classifiers

Our heart attack data was perfectly classifiable since we could cleanly separate the
+1 and �1 classes. This is not always the case, especially for biological datasets.
Let’s add two points to our dataset and replot the data.

M����� code

1 hatk(end+1,:) = {155,215,-1};
2 hatk(end+1,:) = {110,215, 1};
3 gscatter(hatk.BloodPressure ,hatk.Cholesterol , ...
4 hatk.HeartAttack ,’kr’);
5 hold on
6 xlabel(’mean arterial pressure [mmHg]’);
7 ylabel(’cholesterol [mg/dl]’);
8 legend(’normal’,’disease’)
9 hold off

With the new data, it doesn’t appear that we can perfectly separate the heart
attacks from the rest. Let’s try to refit our model.

M����� code

1 mdl = fitcsvm([hatk.BloodPressure hatk.Cholesterol], ...
2 hatk.HeartAttack);
3 gscatter(hatk.BloodPressure ,hatk.Cholesterol , ...
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4 hatk.HeartAttack ,’kr’);
5 hold on
6 xlabel(’mean arterial pressure [mmHg]’);
7 ylabel(’cholesterol [mg/dl]’);
8 plot(hatk.BloodPressure , ...
9 -mdl.Beta(1)/mdl.Beta(2)*hatk.BloodPressure ...

10 - (mdl.Bias)/mdl.Beta(2))
11 legend(’normal’,’disease’,’Classifier’);
12 hold off

Now we have some points that sit on the wrong side of the classifier. Our accu-
racy should have decreased (i.e. out loss during cross validation should increase).

M����� code

1 xval = crossval(mdl,’Kfold’,5);
2 kfoldLoss(xval)

M����� output

1 ans = 0.0909

The SVM formulation we described above is called a hard classifier since it
requires that all points be on the correct side of the classifier. In practice, SVM
software packages use a soft classifier where points can appear on the wrong side.
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When solving SVM problems with soft classifiers, the goal is to both maximize the
separation and minimize the number of incorrectly classified points. We will not
discuss the mathematical formulation of soft classifiers in this book.


