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Review
We can uniquely decompose a vector x over a basis by finding the
coefficients a such that

x � a1v1 + · · · + anvn

We find the coefficients by collecting the basis vectors into a matrix

V � (v1 v2 · · · vn)

and solving the system of equations

Va � x

Using V and its inverse V−1 we can jump between the original
vector and the coefficients of the decomposition.
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The Singular Value Decomposition (SVD)

Any m × n matrix A can be decomposed into the product of three
matrices

A � UΣVT

I U is an orthogonal m ×m matrix.
I Σ is a diagonal m × n matrix.
I V is an orthogonal n × n matrix.

Example: 2 × 3 matrix A:(
a11 a12 a13
a21 a22 a23

)
︸              ︷︷              ︸
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σ1 0 0
0 σ2 0

)
︸         ︷︷         ︸

Σ
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︸               ︷︷               ︸
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What happens during matrix multiplication?

Let’s talk about multiplication using a 2 × 3 matrix A:

y � Ax

The input vector x has three dimensions but the output vector y has
two dimensions.

I What happens to the third dimension?
I Is that information lost?
I If not, how does A compress the information from x into the

smaller vector y?
I How many times are we going to talk about matrix

multiplication?
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Every matrix has an input and output basis

(
a11 a12 a13
a21 a22 a23

)
︸              ︷︷              ︸

A

�

(
u11 u12
u21 u22

)
︸      ︷︷      ︸

U

(
σ1 0 0
0 σ2 0

)
︸         ︷︷         ︸

Σ

©«
v11 v12 v13
v21 v22 v23
v31 v32 v33

ª®¬
T

︸               ︷︷               ︸
VT

I The columns of V are an orthonormal basis for the input space
of A.

I The columns of U are an orthonormal basis for the output
space of A.

I Matrix multiplication is simply a change of basis from the input
to output spaces. The switch happens in the matrix Σ.



Step 1: Decompose x onto the input basis V

I We want to find coefficients a such that x can be expressed
using the input basis (the columns of V).

I We can find these coefficients using V−1x.
I But, V is an orthogonal matrix, so V−1 � VT. The coefficients

to decompose x onto V are simply VTx.

y � Ax
� UΣVTx
� UΣa

a � VTx are the coefficients that decompose x onto the input basis.
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Step 2: Rescale the input coefficients to match the output
basis
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Step 3: Reconstruct y using the output basis
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y � σ1a1u1 + σ2a2u2



The information hierarchy in the SVD
The singular values (σi) map the right singular vectors (vi) to the left
singular vectors (ui). This mapping happens in the matrix Σ. Any
extra right or left singular vectors are “zeroed-out" by Σ.

u1
σ1←−−− v1

...

um
σm←−−− vm

0
0←−−− vm+1

...

0
0←−−− vn

All singular vectors are unit vectors, so the largest singular values
identify the most important parts of the matrix.
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