Low Rank Approximations: Part I

BIOE 210
Review

We can uniquely decompose a vector \mathbf{x} over a basis by finding the coefficients \mathbf{a} such that

$$\mathbf{x} = a_1 \mathbf{v}_1 + \cdots + a_n \mathbf{v}_n$$

We find the coefficients by collecting the basis vectors into a matrix

$$\mathbf{V} = (\mathbf{v}_1 \mathbf{v}_2 \cdots \mathbf{v}_n)$$

and solving the system of equations

$$\mathbf{V} \mathbf{a} = \mathbf{x}$$

Using \mathbf{V} and its inverse \mathbf{V}^{-1} we can jump between the original vector and the coefficients of the decomposition.
The Singular Value Decomposition (SVD)

Any $m \times n$ matrix A can be decomposed into the product of three matrices

$$A = U\Sigma V^T$$

- U is an orthogonal $m \times m$ matrix.
- Σ is a diagonal $m \times n$ matrix.
- V is an orthogonal $n \times n$ matrix.
The Singular Value Decomposition (SVD)

Any $m \times n$ matrix A can be decomposed into the product of three matrices

$$A = U\Sigma V^T$$

- U is an orthogonal $m \times m$ matrix.
- Σ is a diagonal $m \times n$ matrix.
- V is an orthogonal $n \times n$ matrix.

Example: 2×3 matrix A:

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix} = \begin{pmatrix} u_{11} & u_{12} \\ u_{21} & u_{22} \end{pmatrix} \begin{pmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \end{pmatrix} \begin{pmatrix} v_{11} & v_{12} & v_{13} \\ v_{21} & v_{22} & v_{23} \\ v_{31} & v_{32} & v_{33} \end{pmatrix}^T$$
What happens during matrix multiplication?

Let’s talk about multiplication using a 2×3 matrix A:

$$y = Ax$$

The input vector x has three dimensions but the output vector y has two dimensions.
What happens during matrix multiplication?

Let’s talk about multiplication using a 2×3 matrix A:

$$y = Ax$$

The input vector x has three dimensions but the output vector y has two dimensions.

- What happens to the third dimension?
- Is that information lost?
- If not, how does A compress the information from x into the smaller vector y?
- How many times are we going to talk about matrix multiplication?
Every matrix has an input and output basis

\[
\begin{pmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23}
\end{pmatrix} =
\begin{pmatrix}
 u_{11} & u_{12} \\
 u_{21} & u_{22}
\end{pmatrix}
\begin{pmatrix}
 \sigma_1 & 0 & 0 \\
 0 & \sigma_2 & 0
\end{pmatrix}
\begin{pmatrix}
 v_{11} & v_{12} & v_{13} \\
 v_{21} & v_{22} & v_{23} \\
 v_{31} & v_{32} & v_{33}
\end{pmatrix}^{T}
\]

- The columns of \(\mathbf{V} \) are an orthonormal basis for the \textit{input space} of \(\mathbf{A} \).
- The columns of \(\mathbf{U} \) are an orthonormal basis for the \textit{output space} of \(\mathbf{A} \).
- Matrix multiplication is simply a change of basis from the input to output spaces. The switch happens in the matrix \(\Sigma \).
Step 1: Decompose \mathbf{x} onto the input basis \mathbf{V}

- We want to find coefficients \mathbf{a} such that \mathbf{x} can be expressed using the input basis (the columns of \mathbf{V}).
- We can find these coefficients using $\mathbf{V}^{-1}\mathbf{x}$.
- But, \mathbf{V} is an orthogonal matrix, so $\mathbf{V}^{-1} = \mathbf{V}^T$. The coefficients to decompose \mathbf{x} onto \mathbf{V} are simply $\mathbf{V}^T\mathbf{x}$.
Step 1: Decompose \(\mathbf{x} \) onto the input basis \(\mathbf{V} \)

- We want to find coefficients \(\mathbf{a} \) such that \(\mathbf{x} \) can be expressed using the input basis (the columns of \(\mathbf{V} \)).
- We can find these coefficients using \(\mathbf{V}^{-1}\mathbf{x} \).
- But, \(\mathbf{V} \) is an orthogonal matrix, so \(\mathbf{V}^{-1} = \mathbf{V}^T \). The coefficients to decompose \(\mathbf{x} \) onto \(\mathbf{V} \) are simply \(\mathbf{V}^T\mathbf{x} \).

\[
\begin{align*}
\mathbf{y} &= \mathbf{Ax} \\
&= \mathbf{U}\Sigma\mathbf{V}^T\mathbf{x} \\
&= \mathbf{U}\Sigma\mathbf{a}
\end{align*}
\]

\(\mathbf{a} = \mathbf{V}^T\mathbf{x} \) are the coefficients that decompose \(\mathbf{x} \) onto the input basis.
Step 2: Rescale the input coefficients to match the output basis

\[
\begin{pmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23}
\end{pmatrix}
\begin{pmatrix}
 x_1 \\
 x_2 \\
 x_3
\end{pmatrix} =
\begin{pmatrix}
 u_{11} & u_{12} \\
 u_{21} & u_{22}
\end{pmatrix}
\begin{pmatrix}
 \sigma_1 & 0 & 0 \\
 0 & \sigma_2 & 0
\end{pmatrix}
\begin{pmatrix}
 v_{11} & v_{12} & v_{13} \\
 v_{21} & v_{22} & v_{23} \\
 v_{31} & v_{32} & v_{33}
\end{pmatrix}^T
\begin{pmatrix}
 x_1 \\
 x_2 \\
 x_3
\end{pmatrix}
\]

\[
\begin{pmatrix}
 y_1 \\
 y_2
\end{pmatrix} =
\begin{pmatrix}
 u_{11} & u_{12} \\
 u_{21} & u_{22}
\end{pmatrix}
\begin{pmatrix}
 \sigma_1 & 0 & 0 \\
 0 & \sigma_2 & 0
\end{pmatrix}
\begin{pmatrix}
 a_1 \\
 a_2 \\
 a_3
\end{pmatrix}
\]

\[
= \begin{pmatrix}
 u_{11} & u_{12} \\
 u_{21} & u_{22}
\end{pmatrix}
\begin{pmatrix}
 \sigma_1 a_1 \\
 \sigma_2 a_2
\end{pmatrix}
\]
Step 3: Reconstruct y using the output basis

\[
\begin{pmatrix}
y_1 \\
y_2
\end{pmatrix} =
\begin{bmatrix}
u_{11} & u_{12} \\
u_{21} & u_{22}
\end{bmatrix}
\begin{pmatrix}
\sigma_1 a_1 \\
\sigma_2 a_2
\end{pmatrix}
\]

\[
y = \sigma_1 a_1 u + \sigma_2 a_2 u_2
\]
The information hierarchy in the SVD

The singular values (σ_i) map the right singular vectors (v_i) to the left singular vectors (u_i). This mapping happens in the matrix Σ. Any extra right or left singular vectors are “zeroed-out" by Σ.

$$u_1 \leftarrow \sigma_1 v_1$$

$$u_m \leftarrow \sigma_m v_m$$

$$0 \leftarrow 0 v_{m+1}$$

$$0 \leftarrow 0 v_n$$

All singular vectors are unit vectors, so the largest singular values identify the most important parts of the matrix.
The information hierarchy in the SVD

The singular values (σ_i) map the right singular vectors (v_i) to the left singular vectors (u_i). This mapping happens in the matrix Σ. Any extra right or left singular vectors are "zeroed-out" by Σ.

\[
\begin{align*}
 u_1 & \leftarrow \sigma_1 \quad v_1 \\
 \vdots \\
 u_m & \leftarrow \sigma_m \quad v_m \\
 0 & \leftarrow 0 \quad v_{m+1} \\
 \vdots \\
 0 & \leftarrow 0 \quad v_n
\end{align*}
\]

All singular vectors are unit vectors, so the largest singular values identify the most important parts of the matrix.