
Linear Models II

BIOE 210



Review: A noisy linear system
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A matrix formalism for linear models
Let’s write out one equation for each observation of the model
y = �0 + �1x.

−0.05 = �0 + 0.07�1 + &1
0.40 = �0 + 0.16�1 + &2
0.66 = �0 + 0.48�1 + &3
0.65 = �0 + 0.68�1 + &4
1.12 = �0 + 0.83�1 + &5
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Solving the linear system

A few points about y = X� + &:
I The unknowns are �, not X.
I The coefficient matrix X is called the model matrix.
I The model matrix X is rarely square.

The solution to this system that minimizes the errors in & is

� = X+y

where X+ is the pseudoinverse of X.
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The intercept

The linear model

y = �0 + �1x1 + �2x2 + &

has intercept (or grand mean) �0.

Really, we should write the model as

y = �01 + �1x1 + �2x2 + &.

Or, in vector form

y =
(
1 x1 x2
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Models without an intercept

If we wanted to fit a model without an intercept, we would write

y =
(
x1 x2

) (
�1
�2

)
+ &.

Why would we not want an intercept?
I When all inputs xi = 0, the response y = �0.
I If we know our system has zero response without an input, we

don’t include an intercept.
I This is rare, so most models include an intercept.
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Prediction vs. Inference

Prediction uses a model to find the response of inputs we’ve never
seen before.

Inference uses a model to understand what inputs determine the
response.



How accurate are a model’s predictions?

Our training data include a design matrix X and a vector of
responses y. Each has n observations (rows).

We fit the model y = X� + & to find the best parameters �.

We feed the training data back into the model to find the residuals:

& = y − X�
= ytrue − ypred

We quantify the accuracy using the root mean squared error of the
residuals.

RMSE =
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1
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Prediction intervals

A model’s predictions should be reported ± the RMSE.

The 95% confidence interval of a prediction is ±2 × RMSE.

Example: A model to predict pulse rate has RMSE of 12 bpm. If the
model predicts 68 bpm for a patient, the 95% confidence interval is

[68 − 2 × 12, 68 + 2 × 12] = [44, 92] bpm

Remember: If you transformed your model, the RMSE will be in the
transformed units!
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Model inference

Model inference involves asking two questions about each of the
models inputs.
1. How large of an effect does this input have on the output?
2. How confident are we in our estimate of this effect?

Consider the two input model

y = 1.2 − 3.6x1 + 0.8x2 + &.

The parameters −3.6 and 0.8 are called effect sizes.

I A unit change in variable x1 would decrease the response by
3.6 units.

I A unit change in x2 would increase the response by 0.8 units.
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How sure are we of the effect sizes?



What does this p-value mean?

I A low p-value indicates that an effect of this size was unlikely
to occur randomly.

I It also means the confidence interval excludes zero, so we
reject the hypothesis that the true effect is zero.

I It does not mean that the effect is practically significant or
important. (That’s up to the effect size.)
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For respondents categorized as currently married at the time
of the survey, we examined marital satisfaction. Analyses indi-
cated that currently married respondents who met their spouse
on-line reported higher marital satisfaction (M = 5.64, SE = 0.02,
n = 5,349) than currently married respondents who met their
spouse off-line (M = 5.48, SE = 0.01, n = 12,253; mean differ-
ence = 0.18, F(1,17,601) = 46.67, P < 0.001).



Interactions

Imagine we’re modeling the response (y) from two input variables,
x1 and x2. The simplest model is

y = �1x1 + �2x2 + &

The coefficient �1 measures the effect of x1 and �2 measures the
effect of x2. These effects are independent.

What is there is another effect that depends on both x1 and x2?
This is an interaction between x1 and x2.
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How do we model interactions?

We model the interaction of x1 and x2 using the product of these
variables.

y = �1x1 + �2x2 + �12x1:x2 + &
The coefficient �12 is the effect size of the interaction.

Why do we multiply x1 and x2? There are at least two ways to
interpret this term.
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The coded factor interpretation

Often we set up design matrices using coded variables. If we’re
testing the variable at two levels, we code the variable as
“on/off” ({0, 1}) or “low/high” ({−1,+1}).

on/off→ interaction when both “on”

x1 x2 x1:x2
0 0 0
0 1 0
1 0 0
1 1 1

high/low→ interaction when both
“high” or both “low”

x1 x2 x1:x2
−1 −1 +1
−1 +1 −1
+1 −1 −1
+1 +1 +1
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The augmented slope interpretation

We can also interpret the interaction as one variable changing the
effect of the other variable.

y = �1x1 + �2(x1):x2 + &
= �1x1 + (�2 + �12x1):x2 + &
= �1x1 + �2x2 + �12x1:x2 + &



Things to remember about interactions

I Interaction are modeled as the product of variables.
I The interaction effect is “above and beyond" the independent

effects (synergy/super-additivity, antagonism/sub-additivity).
I Higher-order interactions are possible (e.g. x1x2x3), but these

are rare.


